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A B S T R A C T   

Bayesian inference has recently gained momentum in explaining music perception and aging. A fundamental 
mechanism underlying Bayesian inference is the notion of prediction. This framework could explain how pre-
dictions pertaining to musical (melodic, rhythmic, harmonic) structures engender action, emotion, and learning, 
expanding related concepts of music research, such as musical expectancies, groove, pleasure, and tension. 
Moreover, a Bayesian perspective of music perception may shed new insights on the beneficial effects of music in 
aging. Aging could be framed as an optimization process of Bayesian inference. As predictive inferences refine 
over time, the reliance on consolidated priors increases, while the updating of prior models through Bayesian 
inference attenuates. This may affect the ability of older adults to estimate uncertainties in their environment, 
limiting their cognitive and behavioral repertoire. With Bayesian inference as an overarching framework, this 
review synthesizes the literature on predictive inferences in music and aging, and details how music could be a 
promising tool in preventive and rehabilitative interventions for older adults through the lens of Bayesian 
inference.   

1. Introduction 

Music is present in almost every culture and society. Its integral role 
in human civilization spans from societal and social functions (Koelsch, 
2013) to emotion regulation (Moore, 2013). Indeed, music relates to key 
aspects of human perception and action including auditory perception, 
emotional perception and motor outputs, and offers therefore a unique 
opportunity to better understand the organization of the human brain 
(Abdul-Kareem et al., 2011; Münte et al., 2002; Schlaug, 2001). 

Intrinsic in the discourse of human brain organization is the field of 

theoretical neuroscience. In the past few decades, this field of research 
has been marked by the development of a Bayesian modeling framework 
for human cognition (Friston et al., 2012; Knill and Pouget, 2004; Lin 
and Garrido, 2022; Vilares and Kording, 2011). Instead of characterizing 
the brain as a passive filter of the sensorium, this paradigm shift posits 
that the brain is akin to a statistical machine that holds beliefs and 
predictions* about its environment, and actively tests these predictions 
against incoming sensory evidence through a process known as active 
Bayesian inference. The main computational imperative of the brain is 
thus two-fold: (1) to encode predictions about the causes of sensory 
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events, and (2) to minimize the prediction errors such that our actions 
are adaptive to the environment that generated these sensory events 
(Friston, 2010). 

Bayesian inference could also underlie music perception (Koelsch 
et al., 2019; Vuust et al., 2009, 2022). During music listening, the in-
dividual is likely to engage in real-time perceptual inference and pre-
dictive processing in order to form expectations and understanding of 
the current musical context. Over multiple experiences, these inferences 
consolidate into an internal model that generates the appreciation of 
different musical patterns. Hence, an individual’s musical taste and 
competency accumulate over the lifespan and is highly dependent on 
his/her cultural background (Balkwill and Thompson, 1999; Heng et al., 
2021; Laukka et al., 2013; Li et al., 2014; Stevens, 2012). 

In parallel, normative aging could be framed as an optimization 
process of Bayesian inference. As the internal model is continuously 
optimized over the course of a lifetime, it becomes more efficient in 
learning frequented variables in its ecological niche as compared to less- 
frequented ones in the larger environment (Friston et al., 2010; Moran 
et al., 2014). This is intuitively expressed as getting “stuck in our ways” 
as one ages, and can be computationally seen as a trade-off between 
model accuracy and complexity. To maintain model complexity in the 
face of biological limitations, the aging brain no longer learns the nu-
ances in its environment through sensory evidence (Moran et al., 2014). 
This may explain the phenomenon of cognitive decline in aging. 

Currently, predictive coding frameworks based on Bayesian infer-
ence have been developed to explain disorders such as dementia, autism, 

Fig. 1. Bayesian Brain Hypothesis. Note. A Bayesian Inference is a statistical theory that describes the update of the probabilities of a hypothesis being true based on 
prior beliefs and current evidence for the said hypothesis. The evidence for the hypothesis is marginalized by the probability of observing the evidence without any 
assumption. B Bayesian inference applied to neuroscience (Parr et al., 2018) posits that the brain not only perceives sensory events, but also concurrently makes 
hypotheses for the cause of sensory events based on prior understanding about the environment that it is in. The difference between a prior hypothesis or a prediction 
and the incoming sensory evidence will contribute to the optimization of the beliefs of the environment. 
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schizophrenia (Friston et al., 2016; Kocagoncu et al., 2021; Van de Cruys 
et al., 2014; Yao and Thakkar, 2022), and have extended its discourse 
from explaining disorders to discussing implications for treatments 
(Putica et al., 2022). However, an outline illustrating how active infer-
ence can be considered as an overarching framework underlying music, 
aging and the effects of music on aging is outstanding. Therefore, the 
current review seeks to bridge the gap among these aforementioned 
research fields. Firstly, we outline how Bayesian inference underlies the 
appreciation and learning of music in the brain. Next, we discuss how 
Bayesian inference can be used to explain age-related decline in cogni-
tion and the brain (including functional, structural and metabolic 
changes). Lastly, we will look at how, according to Bayesian inference, 
music can be a unique opportunity to understand age-related changes 
and how it may be an optimal way to retard the effects of aging in the 
brain. 

2. Music in the Bayesian brain 

2.1. The Brain computes music through Bayesian Inference 

Music is a uniquely neurological phenomenon. Fundamentally, 
sound waves are produced when an individual plays a musical instru-
ment. These sound waves consist of simple and complex frequencies, 
and create small vibrations that are passed along the air particles. These 
vibrations are translated in the brain into something that holds meaning 
and beauty, something that engenders emotions and movements, and 
brings about social bonding within and across different cultures. The 
brain accomplishes this just like how it engages in all the other 
wonderful marvels that it does - by making Bayesian inferences. 

2.1.1. What is Bayesian inference in the brain? 
Bayesian Inference* is a statistical theory that outlines the update 

of a prior model* to a posterior model* with new information gath-
ered (Fig. 1A; see Glossary) (Jaynes, 2003; van de Schoot et al., 2021). 
Consequently, applied to the brain (Knill and Pouget, 2004), it argues 
that the brain makes inferences about the environment based on prior 
knowledge; it forms an internal model of the probabilistic distribution of 
environmental states to understand the uncertainties associated with its 
surroundings. This model is optimized by the evidence collected through 
interaction with the immediate environment (Fig. 1B; Friston et al., 
2012; Knill and Pouget, 2004; Vilares and Kording, 2011). 

Music is a type of internal model (a.k.a., generative or world 
model*) that is formed in the brain. It holds the probabilistic distribu-
tion of different sounds in a musical piece. These probabilistic distri-
butions are then associated with different situations and surroundings. 
Indeed, Pearce (2018) showed that a broad range of psychological 
processes involved in music perception (e.g., expectation, emotion, 
memory, similarity, segmentation and meter) can be understood in 
terms of a single underlying process of probabilistic prediction using 
learned statistical regularities, termed the Information Dynamics of 
Music (IDyOM; Pearce, 2005). Using probabilistic predictions and sta-
tistical learning* (see Glossary), IDyOM could effectively simulate and 
generate predictions about individual differences in music perception 
and experience, which occur as a result of enculturation in different 
musical styles. This parallels the central tenet in Bayesian inference; our 
understanding of the environment around us, which includes music, is 
built upon our internal generative or probabilistic model. As this model 
gets optimized by different encounters, our understanding of the world 
also consolidates around these experiences accumulated throughout our 
life. Thus, Bayesian inference can be conceptualized as the fundamental 
mechanism underlying perception and emotional experience of music, 
instead of other distinct psychological and cognitive mechanisms (see 
BRECVEM model; Juslin and Västfjäll, 2008). 

Bayesian belief updating in the setting of active inference constitutes 
two processes: (1) to encode predictions about the causes of sensory 
events, i.e., perceptual inference*, and (2) to minimize the prediction 

errors such that our actions are adaptive to the environment that 
generated these sensory events, i.e., active inference* (Friston, 2010, 
and see Glossary). This is a recurrent process that ultimately leads to 
individualized experiences and musical tastes. Perception engenders 
action, and actions refine perceptions. In the case of music listening, at 
one end of the hierarchy, sensory learning occurs during music 
perception as state-to-state musical changes accumulate as a model of 
expectancy of the upcoming tonal and rhythmic context and its vola-
tility. At the other end, actions are generated that are congruent with 
this expectancy, for instance in the form of finger-tapping to the rhythm 
of the song, that reflects the learnt model of context and volatility. This 
finger tapping is satisfying because it is based on internal models that are 
congruent to the incoming sensory data, and it further contributes to the 
expectation of upcoming rhythmic context. This may explain why a 
mismatch between prior expectations (i.e., the finger tapping) and the 
incoming data (i.e., music) results in a prediction error* (see Glossary) 
that evokes a sensation of surprise. Following this error, is a strong 
impulse to tap to the new beat, where adjustments are made based on 
the prediction error, and the prior expectation is updated to a posterior 
belief to accommodate the new incoming data. 

2.1.2. How does the brain create an internal model? 
As individuals gain an understanding of the statistical regularities of 

sensory information in the world, an internal model of these environ-
mental phenomena, including music, is formed (Friston, 2010). This is 
achieved through interactions and predictive inferences with that phe-
nomenon (Friston, 2010). Predictive inferences refer to the process 
whereby the brain actively predicts incoming sensations and their cau-
ses based on the likelihood of sensations, given their external causes. 
When listening to music, the listener develops an expectation of the 
upcoming musical sequences based on a learnt internal model of the 
probabilistic fluctuations in the melodic, rhythmic and harmonic 
structure of the music (for a review of predictive processing of melody, 
see Basiński et al., 2023). This understanding of the dynamic formation 
of expectations (along with their realization or denial) during music 
listening builds upon seminal works such as Meyer (1956), Narmour 
(1992), and Huron (2006) among others. 

Recently, Vuust and colleagues (2022) formulated the predictive 
coding of music (PCM) model (see also see previous works from Koelsch 
et al., 2019; Vuust et al., 2009), which inherits largely from the Bayesian 
inference perspective. Essentially, the PCM model posits that recursive 
Bayesian processes between perceptual and active inference are the 
fundamental underlying principles resulting in music perception (which 
encompasses melodic, harmonic and rhythmic processing), action, 
emotion and learning. 

The brain actively goes through Bayesian inference as we listen to 
music. It deploys an internal predictive model that is based on consoli-
dated past musical experiences to guide our perception of the current 
piece of music. The internal model is built upon the incoming sensory 
evidence (µ). The likelihood of musical progressions (λ) can be inferred 
to track the statistical regularities (X) underlying dynamic sensory 
changes when listening to music. This is what the brain uses to actively 
predict the upcoming musical notes and set up an expectation of the 
musical motif. This expectation creates actions (α) that are consistent 
with it, such as tapping or dancing to keep with the rhythm (Fig. 2). As 
expectations are realized or violated, brain regions responsible for the 
release of neurochemicals that engenders emotions are also activated (e. 
g., Blood and Zatorre, 2001; Gold et al., 2019). 

Individuals navigate the environment via actions based on pre-
dictions that are consistent with their current internal understanding of 
the surrounding. When there is a mis-match between the prediction and 
the actual incoming sensory experience, a prediction error is generated. 
This prediction error is used to update the prior expectations we have 
about the current sensory context, for instance a particular piece of 
music, and the updated expectations will generate actions that reduce 
the prediction error between current expectations and the music (Vuust 
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and Frith, 2008). 
Notably, prediction errors have two important properties: firstly, 

prediction errors are weighted by their expected precision*. At any 
instance, the brain is experiencing an influx of sensations; yet, it has 
limited resources to process all this information. Within the mass of 
information, the brain needs to select the most relevant, precise and 
important data to the current context. Therefore, the brain does not treat 
all prediction errors equally (see Herff et al., 2020), but instead assigns 
more weight to prediction errors that were expected to be more precise 
or reliable in updating Bayesian beliefs under the generative model. 
Activation of these errors will be amplified while errors that are deemed 
less accurate will be inhibited. In this regard, studies have shown that 
the precision of a prediction error correlates with the synaptic gain of 
the error units, and is modulated by long-range neuromodulators such as 
dopamine, acetylcholine and norepinephrine (Friston et al., 2010, 2016; 
Iglesias et al., 2021; Moran et al., 2013; Newman et al., 2012; Powers 
et al., 2017; Vossel et al., 2014; Yu and Dayan, 2005). This process also 
accounts for the release of aforementioned neuromodulators (particu-
larly dopamine) while individuals internalize the statistical regularities 
within a new piece of music. 

Secondly, prediction errors are hierarchical. Sensory events in the 
environment, such as music, can often be a result of a hierarchical 
structure of causal latent levels (see Box 1). Recent studies showed that 
the brain does perform Bayesian inference on multisensory information 
across different levels of the cortical hierarchy (Gordon et al., 2017; 
Rohe and Noppeney, 2015; Chao et al., 2022), and that distinct neuro-
logical signals for different levels of prediction errors could be (Stephan 
et al., 2019), and indeed have been (Koelsch et al., 2019) captured in 
experiments. Further, the hierarchy of expectations that the listener 
forms and draws from during music listening has explicitly been 
captured in Pearce’s IDyOM model (2005), which includes a short-term 
and long-term model (reflecting the expectations stemming from the 
local context, as well as those resulting from long-term musical 

knowledge, respectively). The next section will outline features of the 
brain that allow for such hierarchical Bayesian inference. 

3. Neuronal implementation of Bayesian inference in the 
musical brain 

Hierarchical levels are evident across Bayesian inference, musical 
and neural structures. Different brain regions and networks formulate 
expectations at different levels in the latent hierarchical structure of 
sensory events. Violations to these expectations produce prediction er-
rors at different levels (see Siman-Tov et al., 2019 for a recent 
meta-analysis of prediction networks in the brain). Synaptic gain as a 
function of precision of prediction errors determines the fecundity of the 
signal to subsequent processing and is proposed to be mediated by 
attentional mechanism and neuromodulators that control the post-
synaptic excitability of neuronal populations encoding sensory infor-
mation, thereby making the chosen signals more influential in driving 
belief updating in the hierarchical brain. 

3.1. Neuroarchitecture 

The cortical architecture of the brain allows the estimation of these 
uncertainties through a process known as predictive coding^ (Clark, 
2015; Shipp, 2016). Predictive coding is a computational framework 
that describes perceptual inference in the brain (for a review of the 
empirical status of predictive coding, see Hodson et al., 2024). It posits 
that the brain generates top-down predictions to explain bottom-up 
sensory input by minimizing prediction errors at various levels of the 
cortical hierarchy (Arnal and Giraud, 2012). The top of the cortical 
laminar (Fig. 3A within the orange band) consists of mostly excitatory 
neurons with a spectral activity that accumulates at higher frequencies 
in the beta (12–30 Hz) and gamma (30–100 Hz) oscillatory bands 
(Maier et al., 2010). From the bottom (Fig. 3A within the green band), 
the deep layers mostly comprise inhibitory neurons that have low 
spectral frequencies in the theta (4–8 Hz) and alpha (8–12 Hz) oscilla-
tory bands (Buffalo et al., 2011; Roopun et al., 2006, 2008). 

Gamma band oscillations have been proposed to encode low level 
(sensory) prediction errors, as evinced by both auditory and prediction 
error research (Bastos et al., 2012, Chao et al., 2022, Fujioka et al., 
2009). This is coherent with findings in music studies that reported 
correlations between gamma oscillations and musical meter (Snyder and 
Large, 2005), whereby musical meter can be considered as a type of 
probabilistic context that describes the temporal occurrence of rapid 
sensory activations. This is in line with the concept of Bayesian filtering, 
whereby accumulation of mass evidence is required to produce one 
probabilistic distribution that accounts for these evidence (Bastos et al., 
2012). 

Furthermore, neural synchrony between gamma and beta band os-
cillations have been reported (Fujioka et al., 2009). Specifically, Fujioka 
and colleagues (2009) found that pre-stimulus beta power in the parietal 
region was correlated with post-stimulus prediction error and gamma 
power in the auditory cortices. This observed coupling is posited to 
reflect the role of beta band oscillations in signaling predictive expec-
tancies according to top-down modulation (Arnal and Giraud, 2012), 
suggesting that beta band oscillations could be a measure of precision 
for lower-level sensory data. 

Gamma oscillations in the lower sensory regions have also been re-
ported to be associated with alpha and theta oscillations in the central to 
anterior brain regions (Kosciessa et al., 2021). To utilize limited neural 
resources optimally, the brain lowers internal inhibition by shifting 
attentional gain to sensory learning. The lowering of internal inhibition 
is represented by decreased alpha activity, given that alpha power re-
flects internal cognitive control; i.e., top-down predictions (Cona et al., 
2020; Klimesch, 2012; Kosciessa et al., 2021; Sadaghiani and 
Kleinschmidt, 2016). The shift of attentional gain to sensory learning is 
represented by increased lower sensory gamma oscillations. From a 

Fig. 2. Interaction between Agent and Environment. Note. Hidden causes of 
environmental changes (X) generates sensory stimuli (µ) observed by an agent. 
The likelihood of environmental events (λ) can be inferred from probabilistic 
fluctuations of the hidden environmental states computed from the incoming 
sensory evidence. This internal model of inferred states guides the agent’s ac-
tions (α) in response to the environmental stimulus. The actions of the agent are 
consistent with the internal model of its environment. The internal model is also 
used to actively predict incoming sensations and their causes. The update and 
optimization of the internal model depend on the difference (prediction error) 
between an agent’s prior beliefs and the sensory stimulations received. 
Perceptual inference is the process of making sense of environmental stimulus 
via optimization of the internal model, while active inference is the process of 
embodied perception, where the agent interacts with the environment ac-
cording to what he believed to have perceived to test these perceptual beliefs. 
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Bayesian inference perspective, musical tension can be considered as the 
degree of uncertainty within the music, whereby increased tension 
represents increased uncertainty. In this regard, increased musical ten-
sion is observed to be associated with decreased alpha power in the 
central-frontal regions (Sun et al.,2020). 

The top layers of the cortical laminar extend in a forward^ manner 
to the deep layers of the columns in the front, i.e., anterior direction 
(Fig. 3B, blue to red region), where information from the sensory regions 
are gradually propagated towards executive centers and serve as evi-
dence that will be checked against the current predictions and context 
(Buschman and Miller, 2007). On the other hand, predictions are 
propagated by the deep layers in the opposite direction; the deep layers 
extend in a backward^ manner to the top layers of the columns at the 
back, i.e., posterior direction (Fig. 3B; red to blue region). 

This pattern of forward and backward neural organization has also 
been reported in neuroimaging studies of music listening and music 
recall (Ding et al., 2019; Lumaca et al., 2021). Specifically, Lumaca and 
colleagues (2021) employed a complex oddball paradigm based on tone 
patterns, and found increased excitation within the left Helsch’s gyrus, 
coupled with a forward connectivity from this region to the left planum 
temporale during deviant responses. Electrophysiology recordings in 
epilepsy patients showed that in the early onset of music listening, brain 
activity was first observed in the gamma frequency band in the temporal 
lobe, followed by the prefrontal region (Ding et al., 2019). In other 
words, activity in the prefrontal region lagged behind the temporal re-
gions. The reverse was observed during music recall: prefrontal activity 
preceded activity in the temporal regions. This provides support for the 
notion that while sensory evidence is propagated in a bottom-up fashion, 

Box 1 
The hierarchical nature of uncertainties in a musical context.  

The stochastic fluctuations in sensory states are the result of a latent hierarchy of hidden causes that are often unknown to the brain. Music is 
a prime example of such a dynamic sensory phenomenon that is generated by a latent hierarchy of musical form and groupings (see 
Generative Theory of Tonal Music (GTTM); Lerdahl and Jackendoff, 1983). At the sensory level (Level 1), the listener receives a wide range 
of auditory and acoustic information, including but not limited to pitch, timbre, loudness, and rhythm. As the listener continuously collects 
these data, he/she builds toward an internal model of his/her understanding of a specific musical pattern, such as the meter (Level 2). In 
this instance, the perception of meter is only formulated when there exists an internal understanding of notes grouped into “strong” or 
“weak” beats. This means that the listener must have formed an expectation about the statistical regularity (i.e., a context) of the beats. The 
regularity and the context of the beats may be constant throughout a piece of music (e.g., for ‘Waltz’ and ‘March’), or it may change across 
time (e.g., for Jazz). With repeated exposure, the listener learns the stability of the context (Level 3) (Koelsch et al., 2019). Thus, in order to 
generate predictive inferences about the type of music, one must form expectations of the musical context, whereby the rate of change in 
the musical context is based on the organization within a meter and the frequency of meter changes across the musical piece. 

This example shows that dynamic changes in the musical context (i.e., causal model of the world) can be inferred from a temporal 
hierarchical structure of recurrent causal levels (i.e., inference model of the listener). The levels are recurrent because the update of one 
level depends on its neighboring levels, and changes on one level bring about changes in other levels. At the highest level (Level 3), 
volatility of the larger musical context determines the stability of contextual contingencies at the lower level (Level 2). Contextual 
contingencies at the second level in turn determine the probability distribution of state-to-state sensory stimulation at the lowest level 
(Level 1). To generate accurate predictions about future musical contexts, the listener must implicitly learn the contextual contingencies 
that underline the uncertainties of predicting the sensory stimulation in the next context. He/she must also form a belief of the uncertainties 
associated with these contextual contingencies across time. 

Literature supports the computation of Bayesian inference in the brain in terms of hierarchical recurrent levels (Bach and Dolan, 2012; 
Marshall et al., 2016; Yu and Dayan, 2005). Accordingly, higher uncertainty estimates (i.e., lower precision), are associated with different 
outcomes at different levels of the hierarchy. Higher uncertainty estimates in the current contingencies promote re-learning about the 
current context through evidence from state-to-state sensory perceptions, while higher uncertainty estimates associated with state-to-state 
perceptions increase the reliance on prior estimates of contextual contingency and their volatility (Dayan and Yu, 2003; Yu and Dayan, 
2005). As such, sandwiched between two layers of the hierarchy of uncertainty estimates is the precision between evidence input from the 
lower level and prediction of the higher level. This precision weight gives rise to attentional and sensory gain tuning as individuals attempt 
to sharpen relevant information that would result in a self-perceived reduction in uncertainty. At lower levels of the functional hierarchy, 
these recurrent pairs may simply be involved in sensory processes such as listening and moving. At higher levels of functional hierarchy, 
however, these recurrent pairs may be involved in more complex roles such as decision-making (e.g., a marching band conductor deciding 
a certain piece of March is more suitable for a specific performance), and epistemic affordance (e.g., re-mixing a piece of music for a DJ set 
at a musical festival). Thus, the unique hierarchical structure of human neuronal circuitry is crucial to the physical feasibility of 
implementing the computations of hierarchical uncertainties in the environment via Bayesian inference (see Figure 3). 

(continued on next page) 
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the predictions are propagated by the deep layers in the opposite di-
rection - i.e., away from the prefrontal regions and towards the sensory 
regions in a top-down fashion. This hierarchical and recurrent organi-
zation of the cortex is proposed to account for music listening amongst 
many other sensory phenomenon (Huang et al., 2023; Lakatos et al., 
2005; Rohe and Noppeney, 2015; Siman-Tov et al., 2019; Wang, 2013) 
and fits perfectly with the computation of hierarchical uncertainty es-
timates via Bayesian inference (Bastos et al., 2012). 

3.2. Bayesian predictive coding in auditory processing 

The Bayesian brain, guided by the recursive hierarchical minimiza-
tion of prediction errors, also provides a framework for understanding 
various electrophysiological phenomena observed in auditory percep-
tion studies. Specifically, the phenomenon of repetition suppression 
(RS), omission response (OR), mismatch negativity (MMN), and early 
right anterior negativity (ERAN) can be explained through the lens of 
Bayesian inference. 

3.2.1. Predictive coding and auditory event-related potentials/fields (ERP/ 
Fs) 

Repetitive stimuli contribute to the formation of prior expectations, 
with RS and OR manifesting as a result. RS signifies a gradual decrease in 
evoked responses over repeated stimuli, attributed to the suppression of 
sensory excitations congruent with top-down inhibitory expectations 
(Auksztulewicz and Friston, 2016). This effect is thought to be similar to 
the gradual attenuation of the N1 event-related component during re-
petitive stimuli (Bendixen et al., 2012; Grill-Spector et al., 2006), where 
N1 reflects auditory evoked-response to unpredictable changes in 
auditory stimuli in the absence of task demands (Joos et al., 2014). OR 
occurs when an expected stimulus is unexpectedly omitted, leaving an 
imprint of the anticipated sensory response (Kok et al., 2014, 2017). 

The role of expectation becomes even more apparent when exam-
ining MMN, which emerges as a consequence of expectation violations. 
In particular, MMN is automatically elicited by deviant stimuli intro-
duced within a sequence of standards. Here, MMN reflects an automatic 
prediction error, providing a neurophysiological marker for the conflict 
between incoming sensory input and prior expectations (Baldeweg, 
2006; Friston, 2005). MMN studies in both auditory and musical 

(continued ) 

Glossary

Bayesian inference*: A statistical theory that furnishes the optimal updates of a prior belief to a posterior belief, 
given new information or evidence.
Generative model*: A probabilistic mapping from causes to observed consequences (data). It is usually specified in 
terms of the likelihood of obtaining some data given their causes (parameters of a model) and prior on the 
parameters.
Prior model / belief*: The initial belief about an uncertain parameter before new information/evidence is 
considered.
Posterior model / belief*: The updated belief following the assimilation of new information or evidence.
Statistical learning*: The process by which recurring patterns of sensory input across time and space are extracted 
from the sensory environment (Frost et al., 2019; Schapiro & Turk-Browne, 2015).
Perceptual inference*: The process of making sense (or encoding predictions) of environmental sensory stimulus 
via optimization of the internal model.
Active inference*: The process of embodied perception or active sensing and learning, where the agent interacts 
with the sensory environment to test posterior beliefs and realize predictions under these beliefs.
Precision*: The inverse variance of a random variable, which quantifies the degree of certainty about the variable. 
Precision corresponds to a second-order statistic of the probability distribution or density of the variable. This can be 
contrasted with expectation (i.e., the mean or average of a probability distribution or density of the variable, a.k.a. 
first-order statistic). 
Predictions*: The output of a model generating outcomes from their causes. Prediction is generated from expected 
states of the world and compared with observed outcomes to form a prediction error.
Prediction error*: The difference between predictions furnished by posterior beliefs and the information or 
evidence (i.e., sensory stimulations) observed.

Predictive coding^: The framework in which the brain is organized in hierarchical layers that make predictions 
about the representations in lower levels. Prediction errors are then propagated forward to update representations in 
higher cortical level.
Forward^: The bottom-up flow of information from sensory input regions towards executive centres.
Backward^: The top-down flow of information from deeper layers (i.e. executive centres) towards sensory regions.
Entrainment^: The concept that two oscillating bodies, each moving in its individual frequency or movement 
period, become locked in a common period when they interact. 

Note: Terms marked with * are mostly discussed under the basics of Bayesian Inference (see Introduction, Sections 2.1.1. and 2.1.2.). Terms marked 
with ^ are mostly discussed in the context of neuronal implementation of Bayesian inference in the brain (see Sections 3.1. and 3.3.) (Frost et al., 
2019; Schapiro and Turk-Browne, 2015).    
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contexts highlight its sensitivity to predictability: smaller MMN have 
consistently been observed in less predictable contexts, such as se-
quences of high-entropy stimuli characterized by either non-repetitive 
melodies (Quiroga-Martinez et al., 2019) or increased temporal 
complexity (Lumaca et al., 2019). Collectively, these studies show that 
more complex auditory contexts pose greater challenges for the brain in 
terms of predictive coding, and may lead to less confident predictions 
and smaller prediction errors for deviant sounds. 

Environmental factors exemplified by the impact of musical training 
(Bonetti et al., 2022; Vuust et al., 2012), and psychological variables 
including depression (Bonetti et al., 2017) and working memory ca-
pacity (Bonetti et al., 2018) affect MMN responses. In addition, quan-
titative evidence of hierarchical brain processing in the context of MMN 
has been provided by Garrido et al. (2009). The authors used dynamic 
causal modeling (DCM) to test the information flow in the brain during a 
passive oddball task which elicited MMNs, and revealed effective con-
nectivity in the brain from the primary auditory cortex to the superior 
temporal gyrus and inferior frontal gyrus, suggesting that MMN might 

be an error signal which assists the brain in fine-tuning its internal 
predictive model. 

Beyond MMN, ERAN is a brain response which plays a pivotal role in 
the context of predictions for auditory and musical stimuli (Arnal et al., 
2011; Koelsch et al., 2002; Koelsch, et al., 2002). ERAN, a distinct 
electrophysiological marker associated with selective attention, signifies 
the entrainment of sensory evidence (represented by high-frequency 
cortical oscillations) with prior expectations (represented by 
low-frequency cortical oscillations). In other words, the ERAN attests to 
the brain’s ability to selectively attend to auditory features based on 
knowledge about impending irregularity, which will resolve uncertainty 
about the upcoming sensory sequence (Rohrmeier and Koelsch, 2012). 
The ERAN is most apparent in response to irregularities during syntactic 
processing in music, particularly in detecting irregularities and viola-
tions within musical syntax (Koelsch et al., 2019; Lindsen, 2012). 

The persistence of ERAN over repeated exposure to syntactical ir-
regularities contrasts with MMN, which typically attenuates with 
continued exposure to acoustical irregularities (Koelsch et al., 2001). 

Fig. 3. Schematic illustration of the hierarchical organization of the brainNote: A. graded potential across the cortical layers in one single cortical column. High- 
frequency oscillations originate from the superficial layers that represent prediction errors, while low-frequency oscillations originate from the deep layers that 
represent predictions. Differences between sensory information and predictions are propagated forward to the neighboring column as information across these 
columns is gradually integrated at the prefrontal regions. B. A simplified representation of sensory information integration across the anterior-posterior axis. Long- 
range neuromodulation (yellow, in this example, the acetylcholine pathway from the basal forebrain constellation, illustrated roughly) helps to integrate incoming 
sensory information into the predicted context by modulating the gains of the synaptic connections based on the precision of this information. This causes a 
distributed pattern of response across the brain that forms the functional correlates of hierarchical Bayesian inference. 
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This temporal distinction suggests that ERAN is not merely reactive but 
is actively engaged in ongoing predictive processes associated with 
musical syntax. Moreover, while the MMN is mainly source-localized in 
the primary and secondary auditory cortex (with contribution from 
hippocampus and medial cingulate) (Alho, 1995; Bonetti et al., 2022; 
Naatanen et al., 2005), ERAN mainly originates in the right inferior 
frontal gyrus (Koelsch, 2011; Maess et al., 2001), highlighting the spe-
cific neural circuitry involved in processing musical syntax and actively 
detecting syntactic errors. This fits with the nature of the anterior- and 
posterior-axis of predictive coding, where MMN as a sensory error signal 
is found posterior to ERAN, which signals context and predictions in the 
prefrontal region. 

Furthermore, the magnitude of ERAN has been observed to vary 
based on the level of attention directed toward the musical stimulus, 
with reduced ERAN amplitudes noted in individuals not primarily 
attending to the music (Loui, 2005). This implies that focused attention 
plays a crucial role in modulating ERAN responses, underscoring the 
interactive nature of attention and expectation in shaping neural re-
sponses to complex auditory stimuli (Maidhof and Koelsch, 2011; Vuust 
et al., 2022). Attention increases neuronal activity associated with the 
attended stimulus, while expectation, grounded in previously learned 
probabilities, reduces neuronal activity linked to the expected stimulus 
(Arnal and Giraud, 2012). Thus, attention is a function of the precision 
of sensory information, while expectation is the prior model in predic-
tive coding. This interplay also extends across different hierarchical 
levels of auditory prediction and involves some of the ERP/Fs discussed 
above. For instance, MMN is enhanced by attentional precision but 
attenuated by explicit top-down expectations (Chennu et al., 2013; 
Paquette et al., 2013). As further evidenced by the P300 responses 
subsequent to MMN, automatic prediction error is highly dependent on 
attentional engagement, with explicit top-down expectations sharp-
ening neural responses (Schwartze et al., 2011). Notably, attention not 
only supports goal-directed behavior but also minimizes internal noise 
by sharpening the amplitude of neuronal activity. 

While temporal fluctuations of attention influence predictive pro-
cesses, a detailed exploration of temporal attending theories (see Palmer 
and Demos, 2022) goes beyond the current scope. In conclusion, it is 
essential to recognize the dynamic interplay between expectation and 
attention, shaping neural responses across different hierarchical levels 
of auditory processing and providing a nuanced understanding of the 
Bayesian predictive coding framework in auditory perception. 

3.2.2. Optimal levels of complexity in sensory information: musical reward 
& Groove 

When a specific musical feature violates, delays, or confirms the 
listeners’ expectations about the continuation of the music, emotions 
may be elicited (Meyer, 1956). These expectations are based on the 
listeners’ prior exposure and experience of the same musical style 
(Krumhansl et al., 1999). In general, musical emotions related to 
violation of expectancies include awe, surprise (Huron, 2006) and 
anxiety (Meyer, 1956). Violation of musical expectancies can also bring 
about psychogenic responses (e.g., chills) and increased physiological 
responses (e.g., increased heart rate and perspiration) (Rickard, 2004). 

Higher levels of the cortical hierarchy encode expectations in the 
form of prior models through repeated sensory stimulation. The 
complexity of these models varies with the statistical structure of the 
sensory stimulus. Intermediate levels of complexity have been reported 
to optimize reward-related responses in music (Agres et al., 2017; Witek 
et al., 2014), as they maximize both reducible uncertainty and learnable 
information (Gold et al., 2019). Reducing uncertainty and seeking in-
formation are critical components of learning, which have been reported 
to elicit dopamine transmission and involve activation of the nucleus 
accumbens (NAcc; a reward-related brain area) (Gold et al., 2019). In a 
similar vein, Cheung and colleagues (2019) showed that chords with low 
uncertainty and high surprise (and vice versa), evoked high musical 
pleasure. In sum, these studies are reminiscent of the inverted U-shaped 

“Wundt” effect (Berlyne, 1974; Wundt, 1874), which suggests that in-
termediate levels of complexity are the most optimal for learning and 
liking. 

Relatedly, pleasure can also be derived from musical groove - known 
as the pleasurable urge to move (Stupacher et al., 2016; Vander Elst 
et al., 2021). Music that elicits the strongest sensations of groove often 
has a repetitive rhythmic pattern (Butler, 2006; Madison et al., 2011; 
Pressing, 2002) which is characterized by syncopated notes with short 
durations (Madison and Sioros, 2014). Here, syncopation refers to the 
phenomenon whereby notes occur on weak metrical positions (as 
opposed to strong metrical positions), and are followed by silences on 
stronger metrical positions (Longuet-Higgins and Lee, 1984). Moderate 
amounts of syncopation are especially effective in eliciting musical 
groove, forming an inverted U-shaped function between syncopation 
and groove (Sioros et al., 2014; Witek et al., 2014). Moderately synco-
pated rhythms may engender the highest number of strongly weighted 
prediction errors, and thus provide the most optimal opportunity for 
active resolution of uncertainty via movement, resulting in the experi-
ence of pleasure associated with groove (Vuust et al., 2022). Besides 
musical features that elicit the sensations of groove, entrainment is also 
an important mechanism that subserves musical groove, and more 
broadly the phenomena that associates auditory-motor movements. 

3.3. Oscillatory and rhythmic entrainment 

In Bayesian inference, prediction errors reflect the extent to which a 
stimulus differs from the prediction (Vuust and Frith, 2008). Thus, when 
prediction errors are low, the deviation between sensory evidence (as 
encoded by high-frequency neural activity) and predictions as propa-
gated by low-frequency activity is minimized. Consequently, neural 
entrainment across frequency bands occurs. In this regard, neural 
entrainment^ (see Glossary) refers to the synchrony between the peri-
odicity of an external stimulus, such as rhythmic sensory input, and the 
timing of neural oscillations. This coherence allows the brain to encode 
the temporal signature of sensory stimulus and improve processing 
efficiency. 

In the musical context, when the neural activity of the brain is 
entrained to the rhythm of the beat, it often further acts in accordance to 
the updated internal model by interacting with the external environ-
ment according to the rhythm, and thereby engaging in active inference. 
The moving of the body to the pace of regular auditory cues (e.g., 
metronome or music) without specifically synchronizing each motor 
element to a discrete beat, thus reflecting the process of rhythmic 
entrainment (Merker et al., 2009; Thaut et al., 2015). Rhythmic 
entrainment plays a key role in music’s ability to create movement and 
groove (Vander Elst et al., 2021). Inherent in music is the rhythmic 
structure, which creates stable anticipatory time scales or templates. 
Given that anticipation is a critical element in improving movement 
quality, the rhythmic structure in music provides precise anticipatory 
time cues to prime the brain to plan ahead and be ready. 

Musical rhythms thus act as a sensory feedback to the brain’s internal 
timekeeper, providing it with additional supporting evidences about 
how much time has elapsed and how much time is left in a movement. As 
the brain accumulates sensory priors of the time duration of the cue 
period, it is able to update its internal predictive model, reduce pre-
diction errors, and make accurate active inferences of forthcoming 
movements. Rhythmic cues thus provide rich and comprehensive tem-
poral information for the brain to optimize movement with respect to 
the auditory input. Over time, synchronization occurs between neural 
oscillations in the brain and music. This leads to further synchrony be-
tween the body’s physiological processes and environments external to 
the body, such as dance and even social interactions, thus enhancing 
both intra- and inter-brain synchrony (Basso et al., 2021; Ross and 
Balasubramaniam, 2014). 

Indeed, recent studies have reported inter-brain neural synchroni-
zation while people listened to music as a group (Chabin et al., 2022; 
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Khalil et al., 2022; Müller and Lindenberger, 2023; Samadani et al., 
2021), and this synchrony can be maintained beyond the period of 
interaction. Likewise, brain coupling has also been observed for in-
dividuals improvising music during a music therapy session (Maidhof 
et al., 2023). These findings provide some evidence for the neuroplastic 
effects of music, and the long-term benefits of listening to or playing 
music, for building and maintaining social relationships, emotionality, 
and supporting brain health in general. In sum, music not only elicits 
synchronized activity in the brain, but also triggers a cascade of 
neurological, physical, and social phenomena that promote the active 
exploration of one’s environment according to these musical inferences. 
These phenomena might provide an ideal chemical milieu in the brain 
that potentially facilitates structural and functional changes in the brain 
(Reybrouck et al., 2018). 

3.4. Neural substrates of music in the Bayesian brain 

Musical processes, including music perception and music making, 
activate a widely-distributed network of brain regions and involve 
multiple neurochemical processes (Bonetti et al., 2021a,b; 2023a,b; 
Chan and Han, 2022; Fernandez-Rubio et al., 2022; Fernandez-Rubio 
et al., 2022; Koelsch, 2014; Gordon et al., 2018; Platel et al., 1997). 
Some of these neural mechanisms activated also intersect with Bayesian 
inference processes: for instance, the cerebellum, auditory-motor 
network, and dopaminergic system. 

3.4.1. The cerebellum: role in rhythmic entrainment, synaptic plasticity, 
and an encoder of event-likelihood 

The cerebellum is implicated in rhythmic entrainment and synaptic 
plasticity. It is postulated to be the foundation of instantaneous 
entrainment between the period of a rhythmic stimulus and the body 
(Thaut et al., 1998), of which rhythmic entrainment is mediated through 
the auditory-motor networks (i.e., auditory cortex, sensorimotor cortex, 
supplementary motor area; Fujioka et al., 2012). Controlling the motor 
neurons in the body, the cerebellum is the gateway for active inference. 
It serves as the bridge between inference and intentions in the brain, and 
actions via the body. The complex activation pattern of the Purkinje cells 
in the cerebellum may directly encode likelihood of probabilistic dis-
tributions of temporal events through synaptic plasticity by changing 
the variability of postsynaptic potentials (Aitchison et al., 2021; Black-
wood et al., 2004; Popa and Ebner, 2019). 

Synaptic plasticity in the cerebellum, particularly at the Purkinje 
cells, can encode prior knowledge for Bayesian inference through 
mechanisms like long-term depression (LTD) and long-term potentiation 
(LTP) occurring at the confluence of parallel or climbing fiber inputs. 
These synaptic changes influence the synaptic weights, which embody 
the prior knowledge and likelihood estimates that are used to transform 
incoming measurements through parallel fibers into Bayesian estimates 
(Friston and Herreros, 2016). Similarly, in music, besides rhythmic 
entrainment, the cerebellum may also be an important locus of context 
and likelihood estimator. This may explain why cerebellar disorders 
could affect musical perception, particularly in metrical tasks (Evers and 
Tölgyesi, 2022). 

3.4.2. Coupling between auditory and motor cortices 
Besides the cerebellum, the ability of the motor system to couple 

with the auditory system (also referred to as auditory-motor coupling) 
and engage in error-prediction correction, has also been proposed to be 
essential in driving active inference through music exposure (Thaut and 
Hoemberg, 2014). In this perspective, the sensory input provided by 
auditory rhythm functions as a bottom-up driving force in optimizing all 
aspects of motor control via physiological rhythmic entrainment of the 
motor system. The involvement of the motor system necessitates higher 
precision of auditory predictions as hypothesized by internal predictive 
models (i.e., top-down processes) (Morillon and Baillet, 2017; Vuust 
et al., 2022). 

The ability of the auditory system to rapidly construct stable tem-
poral models has been well-established (for a review, see Thaut and 
Kenyon, 2003). The auditory system is able to detect temporal patterns 
in auditory stimuli with extreme precision and speed, as required by the 
nature of sound, which exists only in temporal vibration patterns 
(Moore, 2003). In addition, the auditory system has richly distributed 
fiber connections to motor centers from the spinal cord upward to the 
brain stem, subcortical and cortical levels (Felix et al., 2011; Schmah-
mann and Pandya, 2009), thus allowing efficient neuronal processing 
between auditory sensory input and motor control. Besides, the ability of 
sound signals and rhythmic music to prime and time muscle activation 
was thought to be modulated via reticulospinal pathways (Takakusaki, 
2017) - with supporting evidence reported as early as 1967 by Paltsev 
and Elner. In sum, movements can instantaneously entrain to the period 
of a rhythmic stimulus (e.g., metronome beat), and stay locked to the 
metronome frequency even when subtle tempo changes (that are not 
consciously perceived) are induced (Thaut et al., 1998). This suggests 
that auditory stimulation could induce short-term plastic changes in the 
firing of the motor neurons. 

3.4.3. Neuro-endocrine effects of music 
In music, dopamine is imperative in the experience of reward, 

pleasure and movement, is dopamine. A plethora of studies have re-
ported that the experience of musical chills is correlated with release of 
dopamine in the striatal system and musical reward (Blood and Zatorre, 
2001, Salimpoor et al., 2009, 2011, 2013). More specifically, the 
anticipation phase is reflected in neural activity in the caudate, and the 
experience of reward and emotional arousal is reflected in neural ac-
tivity in the nucleus accumbens (NAcc). 

Furthermore, dopamine is crucial in maintaining brain plasticity 
through its effects on long-term potentiation and depression across 
cortical and subcortical regions. It has been well-established that 
dopaminergic striatum modulates prediction errors (Chowdhury et al., 
2013; Friston et al., 2012; Schwartenbeck et al., 2015; Stalnaker et al., 
2019). Depending on the level of prediction error, dopamine can either 
favor the stabilization of prior predictive models, or create lower in-
hibitions to favor fast flexible switching between different models (i.e., 
belief updating) (Durstewitz and Seamans, 2008). The precision of 
prediction errors, as signaled by dopamine, engender actions to optimize 
inferences about our environment (Friston et al., 2012; Marshall et al., 
2016). Thus, it is no surprise that dopamine is central to movement. The 
dorsal striatum, wherein dopamine is released, is also suggested to 
support hierarchical metrical structure (Cannon and Patel, 2021; Palmer 
and Krumhansl, 1990). The dorsal striatum works in conjunction with 
the supplementary motor area (SMA) to facilitate beat perception 
whereby activity in both of these regions repeats with the metrical cycle 
as well as with the musical beat (Cannon and Patel, 2021; Li et al., 
2019). Integrating existing evidence of dopamine on both musical 
reward and movement, Pando-Naude and colleagues (2023) recently 
showed that dopamine is indeed a crucial factor related to the rewarding 
experience during musical movements, also referred to as the pleasur-
able urge to move. 

Besides dopamine, studies have also investigated the role of 
norepinephrine in music perception, albeit to a lesser extent. These 
studies showed that listening to fast-paced music increases serum levels 
of norepinephrine as compared to slow-paced music (Gerra et al., 1998; 
Hirokawa and Ohira, 2003; Yamamoto et al., 2003). This is coherent 
with the suggested function of norepinephrine as a modulator of 
attention and salience in Bayesian Inference (Yu and Dayan, 2005). 
Norepinephrine has been hypothesized to enhance detection of salient 
stimulus during situations where the changes of probabilistic context is 
very frequent (i.e., high unexpected uncertainty). As such, music with 
faster pace might have a stimulating effect on its production in the body. 
Indeed, in animal studies, norepinephrine has been found to modulate 
the coding of complex vocalizations in the songbird auditory cortex, 
enhancing signal detection and information encoding (Ikeda et al., 
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2015). However, this effect has yet to be repeated in human studies. 
In sum, neuromodulators such as dopamine, and norepinephrine 

modulate the synaptic gains of forward and backward connections 
under the context of uncertainty (Bauer et al., 2012; Thiele and Bell-
grove, 2018; Yu and Dayan, 2005; Fig. 3B). It also allows the selective 
activation of different neuronal populations to produce specific tempo-
ral and spatial patterns of cortical oscillations that facilitates Bayesian 
inference by sharpening the sensory contour and redirecting attention to 
information with higher precisions. Overall, different brain networks 
and neurotransmitters work synergistically to compute Bayesian infer-
ence processes (such as signaling expectations, precision of prediction 
and prediction errors) in music processing, which gives rise to rewarding 
experience and movement while engaging with music. 

These processes change as we mature into the golden years. As we 
age, our experience with music increases and crystallizes into a robust 
internal model of musical perception. Yet, at the same time, many of 
these neuroarchitectures subserving Bayesian Inference deteriorate. In 
the next section, literature on music in the aging Bayesian brain will be 
outlined and discussed. 

4. The aging bayesian brain 

Aging stands as a profound biological and societal phenomenon, 
presenting substantial challenges and economic implications (Lenox--
Smith et al., 2018). For these reasons, a wealth of research has investi-
gated aging, focusing both on healthy aging and pathological conditions 
such as dementia. This multidisciplinary exploration, spanning from 
psychology (Bartrés-Faz et al., 2023; Pione et al., 2021), biology (Cipolla 
and Alkayed, 2023), to pharmacology (Watts et al., 2023), consistently 
revealing a primary concern - the decline in cognitive functions, espe-
cially affecting processing speed, memory and predictive processes 
(Darby and Dickerson, 2017; El Haj et al., 2015; Fabiani, 2012; Grady, 
2012). Predictive processes, as discussed earlier, are essential to music 
perception and experience. In this regard, music thus offers a unique 
opportunity to elucidate the relationship between aging and afore-
mentioned cognitive processes, including prediction. 

4.1. The paradox of Bayesian aging: cognitive decline despite 
optimization of Bayesian Inference processes with age 

Consolidated priors, which get refined over the course of our lives 
and determine our understanding and interaction with the world, is 
fundamental to Bayesian Inference. As we keep testing our beliefs about 
the environment, we use prediction errors to update our model about the 
world and consolidate it into precise and adaptive understanding of our 
ecological niche. Therefore, aging can be seen as an optimization pro-
cess of Bayesian inference; as we age, we get better at predicting envi-
ronmental outcomes. However, this raises an obvious question: why do 
our cognitive faculties start to decline as we step into our golden years? 

The information processing speed theory of aging (Salthouse, 1996) 
proposed that one of the main factors of aging is the global decline of 
cognitive functions due to reduction in processing speed (Charlton et al., 
2008; Park et al., 2002). The decrease in processing speed is correlated 
with the ability to inhibit irrelevant information and afford attention to 
processes that are relevant to the task at hand. From the Bayesian 
perspective, this can be seen as the inability to determine the precisions 
of different information during task performances. This may seem con-
tradictory to the Bayesian hypothesis that precision of prior models and 
sensory evidence are continuously refined through life experiences. 

One important consideration that might disentangle this contradic-
tion, is that an individual’s priors are consolidated based on biased 
sensory experiences over the course of life that is unique to him/her 
(Friston, 2010). As we learn more about the beneficial states of the 
environment, we afford actions that we perceive to allow us to experi-
ence more of these adaptive environments. Thus, while the internal 
model is continuously optimized over the course of a lifetime, it gets 

better at encapsulating a small set of frequented variables in its 
ecological niche as compared to less-frequented variables in the larger 
environment (Moran et al., 2014). This explains the observation that 
older adults retain a significant amount of crystalized intelligence (Park 
and Reuter-Lorenz, 2009; Zec, 1995), such as verbal skills, despite 
decline in fluid intelligence (including information processing speed, 
working memory, executive control; Grady, 2012), which are commonly 
tested in experimental scenarios (Li et al., 2001). This also explains why 
older adults seem to update their predictions (after an incorrect pre-
diction) of the forthcoming auditory information more slowly and 
cautiously than younger adults (Herff et al., 2020). 

Moreover, the increased reliance of consolidated models is accom-
panied by a relative decrease in precision of sensory prediction errors. 
Older adults might have difficulty learning the nuances in the environ-
ment through sensory evidence (Moran et al., 2014), although some 
research suggests that over time, they eventually arrive at an accurate 
and stable model (Herff et al., 2020). Generally, reliance on consolidated 
priors mediated by top-down control increases, and Bayesian model 
updating through bottom-up sensory learning attenuates (Bruckner 
et al., 2022; DeDe, 2014; Nassar et al., 2016). This shift in balance helps 
to prioritize limited functional resources in the aging brain and is also 
collaray to the natural decline of functional specialization, particularly 
in the sensory regions (see neural dedifferentiation; Li and Linden-
berger, 1999). Computationally, it can be seen as a trade-off between 
model accuracy and complexity under the context of limited brain 
resources. 

Neural complexity can be indexed by brain entropy, which sees 
marked decline in older adults (Cieri et al., 2021). This decline reflects 
the decrease in the dynamic balance between order and chaos in the 
older brain. The decline in sensory ability to receive stimuli in a 
bottom-up fashion also affects the cognitive capability to process, 
interpret, and integrate these stimuli in a top-down manner. Indeed, 
early large cross-sectional studies (Baltes and Lindenberger, 1997; Lin-
denberger and Baltes, 1994; Valentijn et al., 2005) have found strong 
correlation between sensory and cognitive decline in older adults. Spe-
cifically, decreased acuity of sensory faculties is likely to result in poor 
recognition of task stimulus, which leads to slower processing speed, 
reduced working memory and episodic memory encoding, and poorer 
task performance (Park et al., 2004). In the auditory domain, decline in 
auditory perception has been proposed to be related to the observation 
of reduced musical perceptual abilities in older adults (Bones and Plack, 
2015; Halpern et al., 1995; Peelle, 2019). 

4.1.1. Increased reliance on consolidated priors with age: Evidence from 
functional and structural studies 

The notion of an increased age-related bias towards consolidated 
internal models is further supported by neuroimaging literature (e.g., 
Chan et al., 2021). Functional imaging literature shows that older adults 
display a stronger preference for frontal activation during cognitive task 
performances as compared to younger adults (Cabeza, 2002; Heng et al., 
2018; Park and Reuter-Lorenz, 2009; Reuter-Lorenz et al., 2000). 
Relatedly, Sikka and colleagues (2015) showed that age-related effects 
on musical semantic memory follows a similar pattern: greater frontal 
activation (specifically the left superior frontal region) was observed 
only in older adults while young adults showed greater activation in the 
left superior temporal gyrus. According to hierarchical Bayesian infer-
ence, consolidated priors are mediated by prefrontal activity, and 
therefore an increase in the reliance on prior beliefs would be reflected 
as a preference for frontal activation. This has been observed alongside a 
general shift of posterior to anterior activation during task, also known 
as the Posterior to Anterior Shift in Aging (PASA, Davis et al., 2008; first 
observed by Grady and colleagues (1994) with Positron Emission To-
mography (PET)). Aging was also associated with a diminished occur-
rence of lower-order and an augmented occurrence of higher-order brain 
networks (Tibon et al., 2021). 

Furthermore, as prior models solidify, connections servicing unused 
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models in the prefrontal regions might also be consolidated into those 
that subserve the crystalized cognitive models. This is reminiscent of the 
common observation of structural frontal atrophy in older adults, 
despite high activation of these areas during task performances (Ken-
nedy and Raz, 2009). While this process enables the aging brain to solve 
simpler and common problems with higher accuracy, it also limits the 
brain’s ability to tackle novel and uncommon problems due to its 
reduced complexity and flexibility. In support of this view, existing 
studies have reported correlations between prefrontal atrophy and 
reduced working memory capacity and processing speed (Head et al., 
2004). Structural atrophy is commonly a result of neuronal loss in 
dendritic spines and synapses, which also affects the neurochemical 
balance of the aging brain (Webb et al., 2019). Neurochemicals, 
including but not limited to dopamine and norepinephrine, are crucial 
encoders of precision and uncertainty in the brain, which also see 
marked decline with age. 

4.1.2. Shift in precision of sensory learning with age: Evidence from studies 
on neuromodulation 

Multiple neurotransmitter systems work synergistically to encode 
the precision of the dynamic sensory environment, thereby enabling the 
individual to selectively allocate precious attentional resources to rele-
vant and salient stimuli. Dopamine, which is thought to encode the 
precision of certain prediction errors pertaining to action, is a crucial 
neurotransmitter in this process (Friston et al., 2012; Marshall et al., 
2016; Schultz, 2016) that is vulnerable to aging (Bäckman et al., 2006; 
Li et al., 2010; Tomasi and Volkow, 2012). Age-related reduction in 
dopamine receptors and transporters (Bäckman et al., 2011) is corre-
lated with deficits in working memory (Abdulrahman et al., 2017; 
Bäckman et al., 2011) and predictive processes in older adults (de Boer 
et al., 2017). Specifically, dopamine precursor levodopa (L-DOPA) has 
been shown to restore prediction error during task performances and 
improve task learning in older adults (Chowdhury et al., 2013). 

Sensory prediction errors, which are modulated by dopamine, pro-
vide the bottom-up representations of external stimuli during Bayesian 
inference. These representations guide the choice of prior predictive 
models and sharpen top-down executive control over posterior areas (Li 
et al., 2001; Noudoost and Moore, 2011). The modulation of dopamine 
on frontal brain regions contributes to the complexity, sensitivity and 
variability in signals that is important for cognitive flexibility and pre-
cise representation of sensory prediction errors (Klanker et al., 2013). 
Consequently, as older adults prioritize prior beliefs (also observed in 
the auditory domain - see Herff et al., 2020), representation of sensory 
prediction errors in the brain declines. Studies have reported attenuated 
prediction error responses (as indexed by MMN and subsequent P300 
during auditory oddball tasks) in older adults as compared to their 
younger counterparts (Cheng et al., 2013; Pekkonen, 2000). This decline 
in prediction error signaling corresponds to a metabolic decline of 
dopamine in the prefrontal regions and may explain older adults’ diffi-
culty in affording selective attention and encoding the precision of 
sensory prediction errors during task. 

Beyond the involvement in cognitive flexibility, dopamine also has a 
crucial role in affect regulation and networks subserving motoric 
movements, particularly the basal ganglia. In this regard, dopamine 
dysregulation in patients with Parkinson’s Disease (PD) was found to be 
associated with flatten responses to musical groove (i.e., the pleasurable 
urge to move to musical rhythms) (Pando-Naude et al., 2023). Specif-
ically, older adults in this study showed less preference and sensitivity to 
the complexity of musical rhythms, suggesting a reduced ability to 
register and process the precision of sensory evidence, amidst biases for 
top-down consolidated prior models and preferences acquired through 
lifelong musical experiences. 

4.1.3. Age-related changes in hierarchy and uncertainty estimate 
Flexible response to a stochastic environment is crucial to survival 

(Friston, 2010). This adaptive behavior requires the internalization of 

the uncertainties and inherent statistical structures present in the envi-
ronment (Bach et al., 2011; Bach and Dolan, 2012; Pearce, 2005; Pearce 
and Wiggins, 2006). However, aging is associated with poorer perfor-
mance under uncertainty (Herff et al., 2020; Nassar et al., 2016; Palmer 
and Mattys, 2016). Specifically, older adults utilize uncertainty of in-
formation to a lesser extent than younger adults, and also show smaller 
behavioral adjustments to prediction errors (Herff et al., 2020). This 
suggests that older adults may employ different strategies for learning 
and decision-making, potentially favoring more stable, and less flexible 
information integration compared to younger adults. In contrast, 
younger adults adjust their behavior significantly in response to minor 
prediction errors, indicating a strategy that allows for rapid adaptation. 

Other explanations to account for age-related decline in efficacy of 
hierarchical uncertainty estimation include: (1) poorer estimate of 
probabilistic context due to insensitivity to prediction errors (Nassar 
et al., 2016), (2) higher variance in the estimate of probabilistic context 
(Mata et al., 2010), and a slower rate in updating information weights 
(Herff et al., 2020). For instance, in studies that utilized probabilistic 
tasks to probe age-related differences in ability to estimate probabilistic 
contexts, it was found that older adults tend to favor a Win-stay, 
Lose-shift mentality (Mata et al., 2010). In this strategy, the current 
decision is inherited from the outcome of the last response. This may 
reflect an incomplete understanding of the hierarchical structure of 
hidden statistical regularities that is necessary to deduce the 
state-to-state transitions of sensory stimulus, which result in an unstable 
understanding of the statistical context with large variances. Further-
more, Herff and colleagues (2020) applied Bayesian modeling to audi-
tory tone sequence learning, and found that older adults update their 
information weights more slowly than younger adults (who are biased to 
react more strongly to negative information). 

In essence, the aging brain is optimized to explain common sensory 
phenomena that are necessary for survival (Friston, 2010; Bonetti et al., 
2024), but may not perform as well in less common and 
cognitively-challenging tasks. This presents a paradox as Bayesian 
inference is optimized through aging. To maintain efficient neural 
resource allocation, the aging brain increases reliance on consolidated 
inferences while decreasing reliance on computational resources of 
sensory learning. This shift in the brain’s neural milieu allows older 
adults to encode simpler yet accurate explanations for common sensory 
events, but it also limits cognitive flexibility and affects fluid 
intelligence. 

Despite these neural challenges, some older adults appear to main-
tain cognitive abilities as they age, showing relatively lesser decline as 
compared to others in their age cohort. These individuals, or ‘super- 
agers’, who can achieve successful cognitive aging trajectories through 
the maintenance of one’s cognition and flexibility (i.e., ‘optimal aging’), 
experience less pathological atrophy in their brains (Borelli et al., 2018; 
Zhou et al., 2023) and show maintenance of neurotransmitter systems 
(e.g., dopamine) (Ciampa et al., 2022; Nordin et al., 2022; Rieckmann 
et al., 2011). This attests to the efficacy of neuroplasticity, even in old 
age, where the organization of the brain can still change substantially as 
a result of continuous practice and experience in enriched sensory en-
vironments, such as active engagement with music (Shaffer, 2016). 

4.2. Not all is lost: drawing insight from the musician’s brain 

Indeed, Bayesian inference is a process that can be fine-tuned 
through practice. A plethora of studies have examined the effects of 
musical training on non-musical cognitive domains, and mostly reported 
differential transfer effects of musical learning on cognition, behavior 
and the brain (e.g., Chaddock-Heyman et al., 2021; Hansen et al., 2013; 
Neves et al., 2022; Talamini et al., 2017, see Sala and Gobet, 2017, 2020 
for null effects). This parallels the notion of neuroplasticity, wherein the 
brain reorganizes into more efficient neural networks as a result of 
continuous practice in a particular domain (Pascual-Leone, 2001). 
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4.2.1. Structural differences in musicians 
At the neural level, learning to play music has been shown to have 

significant structural and functional effects on the brain (Criscuolo et al., 
2022; Münte et al., 2002; Pascual-Leone, 2001; Schlaug, 2001). Several 
brain regions that show structural differences in musicians are also 
implicated in processes related to Bayesian inference, particularly the 
cerebellum and corpus callosum. Studies have reported that the cere-
bellar volume is about five percent larger in musicians than in 
non-musicians (Hutchinson et al., 2003; Wieser, 2003). Increased cere-
bellar volume was posited to be a result of extensive musical training - 
which involves movement coordination, timing of sequential move-
ments and prediction error driven motor updating, i.e., active inference 
and cognitive skill learning (Hutchinson et al., 2003). This observation 
parallels studies that showed microstructural changes after intense and 
prolonged motoric activity, which creates an ideal neurochemical milieu 
for microstructural plasticity (e.g., Schlaug, 2001; Wieser, 2003). 

Movement provides the brain the agency to evince its predictions 
through data collection. Complex synaptic mechanisms within the cer-
ebellum allows the brain to encode the likelihood of such data collected 
through neuroplasticity. As such, cerebellar changes associated with 
musical expertise may provide musicians with more robust likelihood 
estimators that allow rapid adaptations of motor movements in order to 
minimize prediction errors. This results in a more effective foundation 
for predictive processes and statistical learning. (Daikoku and Yumoto, 
2020; Pesnot Lerousseau and Schön, 2021). 

The ability of the cerebellum to make successful active inference is 
facilitated by the corpus callosum. The corpus callosum plays a crucial 
role in the transfer of motor, sensory and cognitive information between 
the two hemispheres, leading to integration of functions and co- 
ordinated inferences and actions across the brain and body respec-
tively (Shillcock et al., 2019; although note that Bayesian inference is 
not limited to interactions across the hemispheres). This integral mem-
ber of the predictive processing network was found to be significantly 
larger in musicians who commenced musical training before the age of 
seven as compared to non-musicians. The structural difference in cal-
losal anatomy between musicians and non-musicians was argued to be a 
result of intensive musical training, of which increased efficiency in 
interhemispheric exchange is necessary to perform bimanual complex 
motor sequences (Schlaug, 2001). 

Furthermore, the functional importance of the corpus callosum as a 
neural hub for long-distance neuromodulators may facilitate the transfer 
of motor skills to other sensory domains and scenarios (e.g., interlimb 
transfer; Gooijers and Swinnen, 2014). Long-distance neuromodulators, 
such as acetylcholine, are crucially involved in neuroplasticity and 
computing precision of prediction errors in Bayesian inference (Chan-
dler, 2016; Khasawneh et al., 2022). The concentration of acetylcholine 
affects the integrity and anatomy of the corpus callosum in aging. 
Therefore, evidence of larger corpus callosum as a result of musical 
training provides motivation for the use of music in preventive or 
rehabilitative measures in aging. 

4.2.2. Electrophysiological differences in musicians 
Besides structural changes, differences in electrophysiological 

markers that encode predictive inferences in auditory information (e.g., 
ERAN, MMN and P3a components) have also been consistently reported 
between musicians and non-musicians (Geiser et al., 2010; Jentschke 
and Koelsch, 2009; Koelsch et al., 2002; Marie et al., 2012; Tervaniemi 
et al., 2006; Vuust et al., 2012). Studies have documented enhanced 
ERAN amplitude at early stages of music processing in musicians, and 
not non-musicians (Centanni et al., 2020; Jentschke and Koelsch, 2009; 
Müller et al., 2010; Steinbeis et al., 2006). Two plausible mechanisms 
from the perspective of Bayesian inference could explain this finding: 
Firstly, heightened musical expectancies could be a result of reinforced 
statistical learning in musicians, leading to the development of more 
specific representations of musical regularities (for instance, chord se-
quences). Secondly, as ERAN represents neural entrainment between 

sensory evidence and prior expectations, enhanced ERAN thus suggests 
increased entrainment between these two bodies of information. This 
increased neural entrainment could possibly be a result of sharpened 
selective attention and improved ability in rapidly resolving prediction 
errors necessitated by the multisensory stimulation over the course of 
musical training. 

Studies that found musicians to show increased P300 amplitudes to 
the first critical note in minor melodies support a similar idea that the 
musician’s brain appears to assign greater saliency to critical sensory 
evidence that help to reduce uncertainty within the current musical 
context, while non-musicians may yet to have developed such specific 
sensitivity to the musical context (Centanni et al., 2020; Halpern et al., 
2008; Steinbeis et al., 2006). In addition, musicians repeatedly show 
enhanced MMN responses (i.e., better abilities at encoding and 
discriminating auditory information), in a wide variety of musical tasks 
such as the detection of melodic (Pantev et al., 2003) and location 
(Tervaniemi et al., 2006, 2009) changes, and rhythmic tasks that involve 
detecting anticipated and upcoming beats (Munte et al., 2003; Vuust 
et al., 2009). From the predictive coding framework, MMN and P300 
components correspond to prediction errors subsequent to the evalua-
tion of sensory evidence. In this regard, enhanced MMN and P300 re-
sponses observed in musicians could be interpreted as a functional 
adaptation and/or a genetic predisposition, allowing for higher sensi-
tivity to prediction errors that eventually leads to more sophisticated 
internal models of music. 

In favor of functional adaptation as a result of musical training, 
enhanced MMN responses were also reported in non-musicians who 
were trained to play a musical sequence on the piano (Lappe et al., 
2008). This enhanced sensory response could be attributed to the 
involvement of auditory-motor coupling and multisensory integration 
(e.g. looking at hand and finger positions and reading musical notation) 
necessitated by learning to play a new musical instrument. Indeed, 
learning to play a new musical instrument is a multimodal task that 
requires neural communication between multiple brain regions across 
both hemispheres (Herholz and Zatorre, 2012; Moreno and Bidelman, 
2014). Improvements in sensory integration could thus afford more 
precise representation of sensory evidence in Bayesian inference, and 
ultimately lead to more accurate priors and understanding of the context 
(e.g., task requirements during an experiment). 

Collectively, these studies provide support for structural and elec-
trophysiological advantages in Bayesian inferences of auditory infor-
mation associated with musical training. Musicians show greater 
sensitivity to the fluctuations and probabilistic distributions within a 
musical piece, resulting in better encoding abilities of the precision of 
priors and prediction errors. Larger prediction errors generate more 
sensory learning so as to reduce the discrepancies between incoming 
sensory information and the internal predictive model. In addition, 
musical training also necessitates heightened demands on auditory- 
motor coupling mechanisms that results in improved sensory learning. 
The combination of top-down (musical expectancy) and bottom-up 
(sensory stimulation) processes shapes brain structure and the ability 
to form music-related predictions with high precision (Tervaniemi et al., 
2009; Vuust et al., 2022). 

Coupled with the brain’s propensity for neuroplasticity even in old 
age, evidence from enhanced cognitive and neural processes involved in 
Bayesian inference as a result of musical training provides strong 
motivation for music to be a prime candidate for cognitive maintenance 
and interventions to support aging. 

4.3. Mitigating age-related decline in the Bayesian brain: Use of music in 
interventions for older adults 

Aging is an increasingly important concern around the globe (Bloom 
et al., 2015; Lenox-Smith et al., 2018), and is accompanied by a com-
bination of cognitive decline (mentioned earlier in this review) and 
various age-related neurodegenerative disorders and cardiovascular 
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health issues (e.g., Brookmeyer et al., 2007). Therefore, it is critical to 
invest resources in developing effective non-pharmacological in-
terventions (e.g., Ng et al., 2022) to either help mitigate the rate of 
cognitive decline or promote cognitive maintenance, so as to reduce 
economic burdens on society and healthcare institutions. As music is 
highly accessible and widely available, music-based interventions or 
music therapy, could be considered as one of the most ideal candidates 
among current forms of non-pharmacological interventions (Agres et al., 
2021). Indeed, existing studies have highlighted the therapeutic effects 
of music on cognition, mood and emotion in healthy older adults (Marie 
et al., 2023; Sajnani et al., 2021; Sheppard and Broughton, 2020) as well 
as in clinical populations such as stroke (Särkämö, 2018, 2014) and 
Parkinson’s disease (PD) (Rose et al., 2019). 

In this regard, two common themes in the aging literature have 
emerged. Firstly, active music engagement, such as short-term musical 
interventions of piano playing (Bugos, 2019; Bugos and Kochar, 2017), 
music making (Jäncke, 2013), and singing (for a review, see Clem-
ents-Cortés, 2015), have been associated with cognitive improvements 
or maintenance in older adults (Chaddock-Heyman et al., 2021; Jäncke, 
2013). Secondly, studies have commonly highlighted the efficacy of 
using music as a form of auditory and rhythmic entrainment in 
improving gait ability (Ghai et al., 2018; Thaut et al., 2015; Thaut and 
Koshimori, 2020) and aiding preventive measures, such as reducing 
incidences of falls (Ghai et al., 2018; Rose et al., 2019; Särkämö, 2018). 

Moreover, emerging research suggests that music perception may be 
less impacted by aging as compared to other domains of auditory pro-
cessing like speech perception (Halpern et al., 2017; Lagrois et al., 
2018). Clinical studies showed that musical memory (both implicit and 
explicit), musical engagement and music-seeking may be relatively 
preserved in dementia (Cuddy et al., 2015; Hailstone et al., 2009). As 
such, the ability of music to activate multiple neural networks, and the 
relatively low impairment of musical memories and experiences due to 
aging, position music as a promising tool in preventive and rehabilita-
tive interventions for older adults. 

4.3.1. Reward experiences during music listening 
Music listening is a common, everyday leisure activity for older 

adults that is linked to positive emotions and contributes to psycho-
logical well-being (Ferreri et al., 2019; Laukka, 2007). Music has the 
capacity to dynamically manipulate interweaving melodic, rhythmic 
and harmonic structures to create an optimal level of uncertainty and 
predictability required for the experience of musical reward and plea-
sure (Gold et al., 2019). 

Pleasurable experiences during music listening, as discussed earlier 
in this review, may be fundamentally rooted in Bayesian inference 
process: particularly the generation and successful minimization of 
prediction errors. Music listening could therefore potentially re-engage 
the aging brain in Bayesian inference and uncertainty estimation, 
which involves the concurrent release of neuromodulators such as 
dopamine, acetylcholine and norepinephrine. These neuromodulators 
are essential in signaling prediction errors (dopamine; Fiorillo et al., 
2003) and encoding higher-order contextual uncertainty (acetylcholine 
and norepinephrine; Dayan and Yu, 2003). With the synergistic in-
teractions of these neuromodulators, the rate of learning and neuro-
plasticity that commonly declines with age could thus be attenuated. 

One important observation, as reviewed earlier, is that prediction 
error responses are attenuated in older adults as compared to young 
adults ( Cheng et al., 2013; Pekkonen, 2000). However, studies have also 
found that dopamine restores reward prediction errors in old age 
(Chowdhury et al., 2013). On the basis that music activates the dopa-
minergic system (Ferreri, Mas-Herrero, et al., 2019), repeated pleasur-
able experiences during music listening could potentially assist older 
adults in recovering some of the ability to compute prediction errors by 
boosting the level of dopamine in their brains. Furthermore, as music 
has been demonstrated to be able to gain qualities of reward prediction 
error similar to rewards driven by biological needs such as food and 

monetary rewards (Gold et al., 2019), it thus has the potential to serve as 
a reward that could complement cognitive and motor interventions. 

Individual differences in music experience and background highly 
influence the efficacy of music-based interventions. Thus, it is also 
necessary to take into consideration older adults’ musical experiences 
and cultural background, given that their lifetime of experiences 
(musical and non-musical) has shaped their internal model and beliefs 
related to music, which forms the basis of their expectations (Savage and 
Fujii, 2022). In this regard, Quinci and colleagues (2022) recently found 
that when cognitively unimpaired older adults listened to self-selected 
and other-selected (including well-known and novel) music, an in-
crease in activity and connectivity between and within auditory-reward 
networks was observed only during self-selected music, which are highly 
familiar and well-liked. From the Bayesian inference perspective, 
increased activity in the auditory areas indicate that stronger predictions 
for familiar music may have been previously formed (Freitas et al., 
2018). Results from this study thus support the notion that music 
listening may be able to positively modulate auditory-reward connec-
tivity, despite other studies observing decline in auditory perception and 
musical reward with age (Belfi et al., 2022). 

In sum, music is powerful in its ability to introduce optimally com-
plex environments ideal for sensory learning, and its ability to elicit 
reward prediction errors and activate the limbic network (particularly 
the amygdala) creates opportunities for learning and Bayesian model 
updating. This can potentially promote instances of musical pleasure 
and reward in older adults. 

4.3.2. Effects of rhythmic entrainment on motor rehabilitation 
Another important form of intervention for older adults is motor 

rehabilitation, which either aims to restore motor deficits as a result of 
neurodegenerative diseases, or to combat increasing prevalence of falls 
in this age group. The underlying mechanisms for attaining benefits in 
the motor domain are suggested to be multifactorial (Thaut, 2003), 
including but not limited to the activation of the dopaminergic system as 
a result of movement and pleasurable feelings elicited by music (Ferreri, 
Mas-Herrero, et al., 2019, albeit a reduced intensity in PD - see Pan-
do-Naude et al., 2023), and endogenous mechanisms that help maintain 
the effect of entrainment when external pacing cues cease (Rose et al., 
2019), and rhythmic entrainment mediated by auditory-motor coupling. 

Rhythmic auditory cueing, a prime example of a motor intervention 
based on the principles of auditory-motor coupling and rhythmic 
entrainment (Yoo and Kim, 2016), has been reported to mediate cortical 
reorganization and neural plasticity (Luft et al., 2004), targets 
stride-to-stride fluctuations in gait (Rochester et al., 2011), and enhance 
motion perception (Effenberg et al., 2016) through the engagement of 
basal ganglia frontocortical network (Schmitz et al., 2013). The basal 
ganglia is a linchpin in the process of Bayesian inference. Not only does 
it produce dopamine (which signals sensory prediction errors) (Gray-
biel, 2000), it is also responsible for action affordance and is therefore a 
nexus in active inference (Friend and Kravitz, 2014; Grillner et al., 2013; 
Parr and Friston, 2018). The basal ganglia is proposed to reduce inhi-
bition to the cortical network that instantiates the desired action plan 
and its associated sensory expectation (Colder, 2015). Beyond initiating 
actions, the basal ganglia also allows the propagation of the actions’ 
associated sensory expectation down towards the primary sensory cor-
tex, thus playing a role in biasing perception by selecting the expected 
sensation and initiating the top-down transmission of those expectations 
in predictive coding. Therefore, the activation of basal ganglia 
fronto-cortical network through rhythmic auditory cueing promotes the 
active use of these Bayesian inference processes in the aging brain, 
which may potentially help to counteract age-related declines. 

Moreover, building on research and literature reviewed earlier about 
the musician’s brain, it was found that patients with early-stage PD who 
were musically trained showed comparable rhythmic motor timing 
abilities as musically-trained healthy adults (Hsu et al., 2022). From the 
Bayesian inference perspective, repeated active music making requires 
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the brain to refine motor abilities, and continue engaging sensory 
learning processes to minimize prediction error via auditory-motor 
coupling, such that the consolidated internal model becomes more 
precise. This could possibly explain the preserved rhythmic motor 
timing abilities found in musically-trained patients with early-stage PD. 

Lastly, one of the most critical components in the context of motor 
rehabilitation is the finding that the injured brain can indeed access 
rhythmic entrainment mechanisms. Early studies of gait training in 
Parkinson’s disease (PD) (McIntosh et al., 1997; Thaut et al., 1996) and 
traumatic brain injury (Hurt et al., 1998) confirmed behaviorally the 
existence of rhythmic entrainment processes in clinical populations, 
whereby patients are able to coordinate their movements to a common 
auditory rhythm. This effect was enhanced when the speed of the 
external pacing cue is of a moderate to fast tempo (Rose et al., 2019), 
reminiscent of the preference for sensory environments that are 
moderately challenging, which are optimal for initiating Bayesian 
inference processes. This positions rhythmic entrainment as a valuable 
mechanism for effective motor rehabilitation, particularly in the aging 
population where onset of degenerative diseases and neural injuries 
(due to undiagnosed stroke), could sometimes be undetected. 

In sum, music-based interventions or activities based on the princi-
ples of rhythmic entrainment and auditory-motor coupling could pro-
vide a solid foundation in explaining the efficacy of these programmes 
through Bayesian inference processes. Music thus serves as a motivating 
and engaging stimulus to cause the individual to want to start and 
continue in these interventions. In the predictive coding perspective, 
entrainment at the neural level between the auditory and motor cortices 
as a result of music makes it easier for movement. In addition, the need 
to focus on these external cues could facilitate attention switching, and 
attention is an important component in the process of predictive coding. 

4.3.3. Multisensory processes involved in music-making and learning music 
Neuroimaging literature has documented better frontal lobe func-

tioning as a result of musical training and better cognition in older 
adults. This has been attributed to the notion that such activities require 
new learning while placing demands on cognition (Hanna-Pladdy and 
MacKay, 2011). Indeed, learning a new musical instrument demands 
continuous Bayesian updating of prior musical understanding through 
sensory learning. This coupling of neural activity between the posterior 
brain regions (associated with sensory learning) and the anterior brain 
regions (associated with consolidated models) can potentially generate 
more neural resources (e.g., increased synaptic plasticity through 
increased modulatory effects of neurotransmitters) that further facili-
tates functional connectivity between the posterior and anterior brain 
regions. As a result, some of the effects outlined in the PASA model of 
aging (Davis et al., 2008; Grady et al., 1994) can potentially be 
mitigated. 

Furthermore, studies that investigated effects of choir singing on 
aging have revealed similar results. As reviewed earlier (see Section 3 ), 
repeated stimulus generates an expectation for the future recurrence of 
the stimulus, resulting in the gradual attenuation of the N1 component 
(where N1 reflects auditory evoked-response to unpredictable changes 
in auditory stimuli in the absence of task demands; Joos et al., 2014). 
This effect is thought to be similar to that of repetition suppression 
(Bendixen et al., 2012; Grill-Spector et al., 2006). ERP studies have 
consistently reported that musical (Seppänen et al., 2012) or frequency 
discrimination (Brattico et al., 2003) training, and choir singing (Pen-
tikäinen et al., 2022), are associated with increased N1 attenuation in 
auditory oddball tasks. For instance, older adults who are choral singers 
have shown reduced N1 responses to a simple oddball condition where 
only either the pitch or spatial location of the sounds was varied, as 
compared to non-singers (Pentikäinen et al., 2022). The finding of 
reduced N1 amplitude provides support that choral singing could be 
associated both with more enhanced encoding of complex auditory 
regularities and more effective adaptation to simple sound features (i.e., 
effective predictive auditory processing). 

Essentially, learning a new musical instrument and singing necessi-
tate effective multisensory integration (Perron et al., 2022; Sutcliffe 
et al., 2020), which declines in older adults (Koen and Rugg, 2019). The 
need for multisensory integration places neural demands that help to 
maintain brain health in older adults. For instance, Perron and col-
leagues (2022) showed that the number of hours of group singing 
positively moderated the relationship between age and 
speech-perception-in-noise capabilities through the thickness of the 
right dorsal precentral sulcus. This effect was further influenced by the 
number of singing languages, and is associated with structural changes 
of bilateral fronto-temporal regions, including the right pars opercularis 
of the inferior frontal gyrus. Therefore, it appears that the demands of 
the task may promote neural plasticity, thereby increasing resistance to 
age-related neurodegeneration. As the aging brain performs these pro-
cesses repeatedly, brain networks involved in learning from sensory 
evidence with precision become stronger and thus are less susceptible to 
cognitive decline. Music-making or singing thus provide an ideal avenue 
to activate neural pathways that are associated with these predictive 
processing processes. 

In addition, new learning that involves motor-related functions ap-
pears to be a crucial factor for inducing robust cognitive changes. This 
may be attributed to the engagement of the cerebellum, which is pivotal 
in cognition (Blackwood et al., 2004; Popa and Ebner, 2019; Schmah-
mann, 2019), but often implicated in age-related neurodegeneration 
(Bernard and Seidler, 2014). The cerebellum is the gateway of the brain 
to the body, and thus serves two important functions in Bayesian 
inference: it (1) actively seeks out evidence in accordance to the current 
prior models through efferent motor commands from the brain to the 
body (i.e., active inferences), and (2) updates the likelihood of envi-
ronmental events through afferent sensations from the body to the brain. 
As such, engagement in musical activities that directly activates the 
cerebellum could help in enhancing active inference and the health of 
Purkinje cells. Purkinje cells are crucial in maintaining synaptic plas-
ticity, which is vital for the encoding of probabilistic distributions of 
temporal stimulus under uncertainty. 

In sum, the above evidence illustrates the ability of music learning to 
improve Bayesian inference in older adults by (1) improving the 
recurrent optimization of Bayesian inference through functional 
coupling between anterior and posterior brain regions, (2) increasing 
the precision of sensory evidence encoded through activating multi-
sensory integration processes which allows for a more accurate internal 
predictive model, and (3) enhancing the encoding of probabilistic dis-
tributions of temporal stimulus under uncertainty in the cerebellum. 
These mechanisms of Bayesian inference impacts older adult’s general 
cognitive capabilities. Therefore, it is no surprise that music learning 
also brings about marked improvements in processing speed, working 
memory and executive functions. 

5. Discussion 

In the current review, we demonstrated the potential and feasibility 
of utilizing Bayesian inference as an overarching framework to explain 
(1) how emotions, movement and learning are derived from music, and 
(2) how aging is conceptualized in terms of a breakdown of the brain’s 
ability to optimize new sensory information and prior internal beliefs. 
With these, we sought to explain how mechanisms related to predictive 
coding in music, can help to reinstitute age-related cognitive, behavioral 
or physical declines as a result of less efficient predictive coding 
processes. 

From the Bayesian inference perspective, human action and cogni-
tion can be defined by perceptual and active inferences of environmental 
uncertainties. In perceptual inference, we form hypotheses based on 
prior sensory experiences about the causes of current information; in 
active inference, we act to test out these hypotheses and collect new 
evidence in the process to refine our assumptions. Music, is one example 
where our appreciation and ability to engage with it is built upon our 
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prior expectations of what is to come in the melody, harmony, or rhythm 
(Cheung et al., 2019; Gold et al., 2019; Huron, 2006; Meyer, 1956; 
Stupacher et al., 2022; Tervaniemi et al., 2009; Vuust et al., 2022; Vuust 
and Frith, 2008). This prior expectation is checked against the incoming 
multisensory evidence, and is continuously updated to form the basis of 
our musical experiences. 

In addition, we further provided three perspectives on the impor-
tance of precision in this framework, namely (1) the encoding of reli-
ability or confidence from point of view of Bayesian inference; (2) the 
notion of neuromodulators as encoding expected uncertainty; and (3) 
the role of dopamine in reward and motivated behavior. 

Firstly, much of the foregoing account rests upon the precision of 
prediction errors in predictive coding accounts of Bayesian inference in 
the brain. In predictive processing generally, one can cast inference as 
the minimization of precision weighted prediction errors (Clark, 2013; 
Feldman and Friston, 2010; Hohwy, 2012); reflecting the fact that only 
precise prediction errors should be afforded the ability to update beliefs 
about states of affairs (see Section 2.1.2 ). 

Secondly, as noted above, physiologically, this is thought to be 
mediated by increases and decreases in synaptic gain, of the sort asso-
ciated with neuromodulators such as dopamine, acetylcholine and 
norepinephrine (see Section 2.1.2 ). Psychologically, precision weighting 
of this sort has been associated with selective attention (with increases 
in precision) and sensory attenuation (with decreases during the gen-
eration of self-made acts). Phenomenologically, this ability to select or 
ignore sources information actively, may translate into notions of 
mental action and the distinction between phenomenally transparent 
and opaque perception (i.e., experiencing music and knowing that I am 
listening to music) (Limanowski, 2017, 2022; Sandved-Smith et al., 
2021) (see Section 3.2.1 ). 

Lastly, we have referred to the role of neuromodulators as encoding 
expected uncertainty (Yu and Dayan, 2005). This expected uncertainty 
is the complement of expected precision (Parr and Friston, 2019); 
namely the confidence ascribed to various representations (e.g., pre-
diction errors). We have also emphasized the role of dopamine in 
encoding the precision of certain prediction errors. This is usually 
associated with active inference about decisions, choices or plans. 
Dopamine may have a special role in encoding the precision or confi-
dence in policies that underwrites the (mental or motor) actions to be 
selected at any particular time. In more expressive treatments of active 
inference, this rests upon the intrinsic motivation or epistemic afford-
ance associated with certain policies (e.g., attending to music or 
rhythmic motor behavior) (Koelsch et al., 2019; Vuust et al., 2018). In 
short, the rewarding aspect of music perception and production can be 
cast as a particular aspect of resolving uncertainty about the actively 
sensed world. 

Throughout the course of our life, we continue to refine our internal 
musical model and improve our abilities to understand and engage with 
it. As such, aging can be seen as an accumulation of life experiences, 
such as music, that get consolidated into adaptive models of the envi-
ronment around us. Consolidated models allow a general and adaptive 
understanding of the world, and offer efficiency and security when we 
navigate our surroundings. At the same time, it takes away the cognitive 
and neural flexibility we have in the younger days. In this manner, 
Bayesian inference provides a parsimonious way of unifying both music 
and aging. 

5.1. Age-related improvements in movement and learning: Involvement of 
multisensory integration and sensory learning afforded by music 

As Bayesian inference is one of the main driving forces behind both 
music and aging, it stands to say that music may be a promising tool to 
reduce the effects of cognitive aging. Indeed, existing studies have 
provided support for the efficacy of music-based interventions (MBIs) in 
improving cognition in older adults (Coubard et al., 2011; Ferreri et al., 
2019; Fu et al., 2018; Ghai et al., 2018; Pentikäinen et al., 2021; 

Sheppard and Broughton, 2020; Sutcliffe et al., 2020). Musical features 
such as rhythm, can be manipulated to elicit different degrees of pre-
dictability and uncertainty which challenge expectations built upon 
prior sensory evidence. This enriches the exposure of older adults and 
introduces new sets of statistical uncertainties that are not part of their 
prior musical experiences, thus increasing the complexity of their 
cognitive and behavioral repertoire and encourages them to engage in 
Bayesian model updating via sensory learning. We posit that the effects 
of engaging with music are not limited to auditory perceptual brain 
regions, but could extend to critical domains of cognition as well. 
Bayesian updating of prior models via sensory learning generates a se-
ries of neural and chemical milieu (e.g. increase in neurotransmitters), 
and increases activation of sensory regions in the brain that facilitates 
neuroplasticity. 

We hypothesized that a particularly effective way to access these 
benefits of music in aging might be through pairing it with motor 
components such as learning and practicing musical instruments, or 
participating in dance programs. Such activities that integrate cognitive 
and physical components require action selection congruent to the 
cognitive implementations of a new motor routine that requires updates 
to previous implementation models via sensory learning. This necessi-
tates the engagement of multisensory coordination and may potentially 
involve regions of the brain that are important in sensory coordination 
(e.g., thalamus), action planning and selection (e.g., basal ganglia, cer-
ebellum and striatum), that may not be involved in passive music 
exposure. 

In sum, active music engagement in the form of learning a musical 
instrument or dance, has been shown to result in positive cognitive and 
neurological outcomes in older adults. Improvements in these outcomes 
can be explained by the Bayesian framework of music perception and 
proficiency in terms of enhancement in Bayesian updating via sensory 
learning. Thus, the decline of these components of Bayesian inference in 
aging can be ameliorated through active music engagement, which 
stimulates multiple brain areas concurrently (Fig. 4). 

5.2. Bridging the gap among research disciplines 

5.2.1. Relative lack of neurocognitive evidence to support common 
behavioral outcomes reported in music-based interventions 

The efficacy of MBIs in older adults in improving other aspects of 
cognition have received considerable support from behavioral studies 
(e.g., Bugos, 2019; Bugos and Kochar, 2017; Coubard et al., 2011; Feng 
et al., 2020; Fu et al., 2018; MacAulay et al., 2019). For instance, Cou-
bard and colleagues (2011) reported an improvement in attention 
switching and cognitive flexibility in older adults. The authors con-
ducted a study comparing the cognitive and physical benefits of older 
adults (age range: 65- to 83-year-old) in contemporary dance to tai chi 
and fall prevention classes. Following a 5.7 month period of participa-
tion, contemporary dance was the only activity that improved attention 
switching and cognitive flexibility in older adults. This effect was taken 
to reflect that contemporary dance improvisation was effective as a form 
of training for changing and inducing plasticity in flexible attention. In 
hierarchical Bayesian inference, attention is an important component as 
it sharpens the amplitude of neuronal activity to reduce internal noise in 
presenting external stimuli (see Section 3.2.1 .). Therefore, the finding 
that dancing to music, can potentially counteract age-related declines in 
attentional allocation and resource by promoting plasticity in flexible 
attention, positions it as an effective form of intervention in older adults. 

Besides, processing speed is reported to be significantly enhanced 
after a short-term intense piano training program (Bugos and Kochar, 
2017) and only observed in older adults who participated in the 
instrument-only group as compared to the singing-only group (Mansens 
et al., 2018). Accordingly, the finding of enhanced processing speed as a 
result of active music-making could be reflective of better information 
processing abilities in older adults. Information processing can also be 
seen as the estimation of context uncertainties in order to engender 
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accurate perception and fast adaptive actions. Thus, an improvement in 
information processing can also be regarded as an improvement in 
Bayesian inference (including more precise prediction errors, and more 
efficient encoding of probabilistic distribution of environmental events 
and updating of priors. 

In addition, Bugos (2019) examined the effects of bimanual coordi-
nation in MBIs on cognitive performance in healthy older adults and 
found that piano training significantly enhanced bimanual motor syn-
chronization skills (including both fine and gross motor control) and 
working memory abilities as compared to percussion instruction (i.e., 
control condition that does not require motor control). Improvements in 
working memory have implications for Bayesian inference processes. To 
form a probabilistic distribution for a specific sensory event, a large 
amount of sensory stimulation similar to this event is required (see 
Section 3 , Bastos et al., 2012). In this view, working memory is the 
temporal accumulation of sensory signals that serves as evidence to 
validate prior prediction. Thus, improvements in the precision of sen-
sory encoding will constitute a clearer working memory. 

Studies have also reported significant improvements in executive 
functions in older adults across differing types of MBIs. These range from 
recorder group lesson (one hour lessons conducted over 12 weeks; 
MacAulay et al., 2019), group singing program (also conducted over 12 
weeks; Fu et al., 2018) to a randomized-controlled trial (RCT) designed 
to investigate the effects of a choral singing intervention (n = 47) 
compared to a health education program (n=46) (intervention method: 
weekly one-hour choral singing/health education for two years) (Feng 
et al., 2020). Executive function includes inhibition control and set 
switching on top of working memory (Miyake et al., 2000). Inhibition 
control and set switching have important functional roles in attentional 
gain and bias competition. Attention mediates the resource allocation 
among bottom-up processes that are propagating competitive sensory 
evidence, and is closely related to the concept of precision in Bayesian 
inference. Resource allocation mediated by attention should be biased 
towards the most precise information, i.e., activity of neurons signaling 
precise information should be turned up, while activity of neurons 
signaling less precise information should be turned down. Effective ex-
ecutive control relies on the computation of precision and probabilistic 
distributions within Bayesian inference. As mentioned in Section 3.4.1 ., 
the cerebellum in particular has been implicated in executive control, 
and has the potential to encode precise probabilistic distributions by 

varying the postsynaptic potentials of its neurons (Aitchison et al., 2021; 
Blackwood et al., 2004; Friston and Herreros, 2016; Popa and Ebner, 
2019). Therefore, enhanced executive function in older adults after MBIs 
may potentially be explained by its positive effects on the plasticity and 
structure of the cerebellum (see Section 4.3.3 .). 

Despite these promising behavioral outcomes associated with MBIs 
in older adults (e.g., Bugos and Kochar, 2017; Coubard et al., 2011; 
MacAulay et al., 2019), relatively fewer neuroimaging studies clarified 
the neural correlates (including structural and functional connectivity, 
changes in neuromodulation) underlying these improvements in the 
aging brain. To gain a more holistic understanding of the benefits of 
music on aging, future studies could consider employing neuroimaging 
techniques (such as structural, functional, diffusion magnetic resonance 
imaging (MRI), MR spectroscopy and PET), which allows the examina-
tion of the structure, function, and neurotransmitter concentration in 
the brain. For instance, it would be insightful to examine the changes in 
functional and structural connectivity between anterior and posterior 
regions of the brain after a period of music- or dance-training in older 
adults using fMRI and diffusion spectrum imaging (DSI). It has long been 
established that there is a change between the functional dynamics of 
the posterior and anterior regions of the brain that is associated with 
aging cognition (PASA, see Section 4.1.1 .). Thus it will be interesting to 
investigate whether music can potentially mitigate some of these 
changes in older adults. Similar lines of research could also be extended 
to inquire neurochemical changes (e.g., dopamine, acetylcholine, and 
norepinephrine, concentration or receptor occupancy) with the use of 
MRs or PET. 

Furthermore, probabilistic tasks, such as the probabilistic Serial 
Reaction Time Task (pSRTT), can be used to probe the behavioral and 
neural correlates of Bayesian inference (e.g., adaptive learning rates, 
uncertainty estimation and possible changes in precision-weighting 
during multisensory integration) in older adults before and after MBIs. 
Such tasks usually require the individual to predict the upcoming 
stimulus, and the frequency is underlied by a probabilistic distribution 
of a latent (and sometimes hierarchical) order. Thus, to make fast and 
accurate responses, individuals must implicitly learn the hidden rules 
guiding stimulus transitions. The behavior (e.g., reaction time) of in-
dividuals in such experiments can be modeled with Bayesian mathe-
matical models to produce Bayesian inference parameters, such as 
prediction error, and precision of prediction error for each individual (e. 

Fig. 4. Bidirectional Influences of Music and Bayesian Inference on the Aging Brain. Note. a) Music evokes emotion, results in movement and learning via Bayesian 
inference processes such as activating the motivational circuitry and auditory-motor coupling mechanism. b) The Bayesian Inference framework involves the 
updating of sensory learning in posterior brain regions and prior expectations in the anterior frontal region, resulting in prediction errors. The precision of prediction 
errors are modulated via neurotransmitters such as dopamine, norepinephrine and acetylcholine. c) In aging, sensory learning declines as reliance on prior ex-
pectations increases, resulting in an attenuation of precision via neuromodulation (represented by solid lines). Here, we postulate that music-based interventions, 
through its ability to promote re-engagement of Bayesian inference processes in the aging brain, could help to ameliorate the declines in older adults and therefore 
explain beneficial effects of music in older adults (represented by the dotted lines). 
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g., see Hierarchical Gussian Filter; Mathys et al., 2014). This allows the 
quantification of Bayesian inference in older adults before and after 
MBIs. 

5.2.2. Emotions, cognition and social factors: need for integration of studies 
from neurocognitive and psychological domains 

While the current review outlined the close inter-relationships be-
tween movement and learning effects of music as well as Bayesian 
inference and aging, the relationship between the emotional effects of 
music, Bayesian inference and aging appear to be less well-understood. 
Existing literature has provided a wealth of evidence and theoretical 
explanations underlying the emotional powers of music through a 
Bayesian inference perspective (i.e., musical expectancy, probabilistic 
predictions and statistical learning). However, the scope of emotions 
and aging via a Bayesian inference perspective seems to be more focused 
on the phenomenon that older adults tend to prefer positive experiences 
over negative ones (see Lima and Castro, 2011; Trapp et al., 2022). This 
is also known as the positivity effect, which is beyond the scope of in-
quiry for this review. Thus, there is first a need to further examine each 
research field in greater depth, and draw similarities and points of de-
parture in each research domain, so as to bridge this research gap in the 
explanation of using music for emotional experiences in older adults. 

Moreover, improvements in emotional outcomes as a result of MBIs 
have been consistently associated with improved quality of life, social 
function and psychological well-being. It is widely recognized that a 

significant contribution to the success of MBIs is that learning in a group 
provides opportunity for social engagement and social bonding in older 
adults (Sutcliffe et al., 2020). For instance, group music training not only 
resulted in subjective improvements in cognition, but also enhanced 
self-efficacy and emotional well-being (MacAulay et al., 2019). Studies 
have also suggested that enhanced emotional well-being is often linked 
to simply being in a group in and of itself, which provides valuable so-
cialization and camaraderie (MacAulay et al., 2019). Thus, it is no sur-
prise that many older adults prefer to participate in group-based lessons, 
as it provides them with an opportunity to form new social connections, 
interact with others, and be part of collective music performances 
(Perkins et al., 2020; Perkins and Williamon, 2014). Access to these 
opportunities often help to combat loneliness, which is prevalent among 
older adults (Schäfer et al., 2020; Shankar et al., 2011). These psycho-
logical benefits are also associated with reduced levels of anxiety and 
depression, improved mental health-related quality of life, and 
improved morale (Coulton et al., 2015). 

Despite the illustrated importance of social engagement and social 
bonding in MBIs, investigation into the possible underlying predictive 
processes of musical communication and social factors is only in infancy 
(e.g., Chabin et al., 2022; Khalil et al., 2022; Müller and Lindenberger, 
2023). This is thus certainly an important avenue for future research. 
Besides the aforementioned recommendations, future studies can also 
employ these biomarkers identified in naturalistic environments, using 
techniques that enable investigations of group dynamics (such as 

Box 2 
Music, Bayesian inference, Aging: Highlights.  

Neural principles of Bayesian inference   

• Inference in the brain constitutes (1) minimization of prediction error - the difference between expected sensory outcomes of an action, 
and sensory information received by the sensory faculties (i.e., perceptual inference), and (2) action planning and selection that will 
evince the current prior understanding of the environment (i.e., active inference).  

• Precision of prediction errors determines the impact of the signal to subsequent processing. This is represented by synaptic gain in the 
brain, which is mediated by attentional mechanisms (e.g., selective attention) and neuromodulators (i.e., dopamine, acetylcholine, 
norepinephrine) that control the postsynaptic excitability of neuronal populations encoding sensory information. 

Bayesian Inference in Music   

• The statistical regularities within a piece of music sets up predictions and expectations about the continuation of the music in accordance 
to prior musical exposure.  

• This Bayesian account of music perception could offer a holistic understanding of the neurological underpinnings of emotions, movements 
and learning. 

Bayesian Inference in Aging   

• Sensory learning attenuates while reliance on internal prior beliefs increases  
• While this is resource efficient and therefore adaptive, it limits cognitive and behavioral flexibility. 
Beneficial Effects of Music in Aging   

• Improvements in emotion, movements and learning in older adults as a result of music-based interventions could potentially be explained 
by mechanisms related to Bayesian inference.  

• Through the activation of the dopaminergic system, the experience of musical pleasure and reward in older age could potentially delay the 
decline in prediction error signaling.  

• Music, as an external cue for motor rehabilitation, taps on the mechanisms of rhythmic entrainment and auditory-motor coupling, which 
activate neural substrates crucial to action affordance and active inference (i.e., basal ganglia, cerebellum, and the dopaminergic system)  

• Active musical engagement necessitates multisensory integration, thereby necessitating the older brain to repeatedly engage in sensory 
learning which may otherwise have declined with age 

Recommendations for Future Research  
• Imaging studies to examine the effect of music-based interventions on the functional, structural and neurochemical changes in the aging 

brain  
• Consider using probabilistic tasks as behavioral markers of Bayesian inference as outcome measures to assess the effects of music-based 

interventions on older adults  
• Bridge research gap between music, emotions, and aging (incorporating the phenomenon of positivity effect)  
• More investigations of the neural correlates of social factors in group music-based interventions    
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wearable EEG technology, motion capture or hyper-scanning), to probe 
the underlying predictive processing mechanisms. 

Furthermore, the current review has also illustrated the crucial role 
of neuromodulation underlying Bayesian inference, particularly in 
explaining musical reward and pleasure. While there are studies doc-
umenting the neurochemistry of music (Fancourt et al., 2014; Ferreri 
et al., 2019; Menon and Levitin, 2005), it is relatively lacking in terms of 
examining possible changes in neurotransmitters in older adults. 
Nonetheless, we can tap on recent technological advances in neuro-
imaging to examine modulatory effects of neurochemicals crucial in the 
Bayesian inference process (e.g., dopamine, norepinephrine, 
acetylcholine). 

5.3. General considerations 

Music-based interventions entail a number of multimodal effects. 
Improvements in general cognition are often not isolated, but occur in 
conjunction with improvements in other domains such as behavioral or 
emotional outcomes. This viewpoint, that improvements in one domain 
is not in isolation, has also been echoed in several other papers in en-
gineering research (see Mane et al., 2020; Robinson et al., 2021). 
Increasingly, studies have started to note the limitations of a unitary 
approach in rehabilitation (i.e., only targeting one outcome aspect, such 
as motor rehabilitation), but instead push for a holistic approach. It is 
interesting to note that even though these studies are not anchored in 
social sciences, they also recognize the importance of a holistic approach 
in preventive or rehabilitative interventions. This provides a strong 
impetus for implementing MBIs and treatments in rehabilitation, given 
its multifaceted ability to influence a variety of domains (cognitive, 
behavior, neural), which in this review, we sought to demonstrate that 
Bayesian inference could be considered as the foundational unifying 
principle. 

All things considered, a common point of consideration is the 
optimal dosage of music-based intervention required for cognitive 
maintenance and/or rehabilitation. While this is beyond the scope of the 
current review, it is hoped that the current review offered some ideas to 
identify potential biomarkers related to predictive processing, which 
can be tested empirically and eventually applied in clinical settings to 
serve as better prognostic identifiers of interventions (see Box 2). With 
these biomarkers identified, we can next inquire about optimal dosage 
and duration of music-based interventions. 

6. Conclusions 

This review is one of the first endeavors to illustrate the potential of 
Bayesian inference as the fundamental principle in explaining music, 
aging, and the effects of music-based interventions on aging. Through 
the synthesis of behavioral, neuroimaging and neurochemical studies, 
we suggest that music can be an important tool to reinvigorate the 
process of Bayeian inference in older adults as it (1) provides an avenue 
to ameliorate age-related declines in neuroplasticity and behavioral 
flexibility, (2) enriches the sensory exposure of older adults and in-
creases the complexity of their predictive models, and (3) is able to 
optimally challenge the musical experiences of older adults to introduce 
new sets of sensory events that may not be a part of their prior predictive 
model. The aforementioned mechanisms encourage older adults to 
engage in model-updating via sensory learning, which may mitigate 
some of the neurological changes due to aging. By adopting the frame-
work of Bayesian inference to understand neurocognitive changes in 
aging and in music perception, we hope that new research directions and 
queries can be generated to further our understanding of predictive 
processing in aging and music, and consequently develop new strategies 
in using music for preventive or rehabilitative purposes. 
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