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Abstract

Patterns in resting-state fMRI (rs-fMRI) are widely used to characterize the trait

effects of brain function. In this aspect, multiple rs-fMRI scans from single subjects

can provide interesting clues about the rs-fMRI patterns, though scan-to-scan vari-

ability pose challenges. Therefore, rs-fMRI's are either concatenated or the functional

connectivity is averaged. This leads to loss of information. Here, we use an alterna-

tive way to extract the rs-fMRI features that are common across all the scans by

applying common-and-orthogonal-basis-extraction (COBE) technique. To address

this, we employed rs-fMRI of 788 subjects from the human connectome project and

estimated the common-COBE-component of each subject from the four rs-fMRI

runs. Since the common-COBE-component is specific to a subject, the pattern was

used to classify the subjects based on the similarity/dissimilarity of the features. The

subset of subjects (n = 107) with maximal-COBE-dissimilarity (MCD) was extracted

and the remaining subjects (n = 681) formed the COBE-similarity (CS) group. The dis-

tribution of weights of the common-COBE-component for the two groups across rs-

fMRI networks and subcortical regions was evaluated. We found the weights in the

default mode network to be lower in the MCD compared to the CS. We compared

the scores of 69 behavioral measures and found six behaviors related to the use of

marijuana, illicit drugs, alcohol, and tobacco; and including a measure of antisocial

personality to differentiate the two groups. Gender differences were also significant.

Altogether the findings suggested that subtypes exist even in healthy control popula-

tion, and comparison studies (case vs. control) need to be mindful of it.
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1 | INTRODUCTION

The resting state (rs) in which the subjects lie quietly inside the scan-

ner has been widely adopted in neuroimaging research. Research has

reliably shown the potential of resting-state fMRI (rs-fMRI) data to

reveal the intrinsic architecture of the brain (Biswal, Yetkin,

Haughton, & Hyde, 1995; Buckner, Krienen, & Yeo, 2013; Fox &

Raichle, 2007) and provide important information regarding the brain

functions and cognitive abilities (Mennes et al., 2010; Smith et al.,

2009; Tavor et al., 2016; Yeo, Tandi, & Chee, 2015). Therefore,

researchers are interested to explore how the patterns in rs-fMRI are

manifested across individuals with different traits and lifestyle habits.

Consequently, there are attempts to link the rs-fMRI to variety of

traits and behaviors (Bertolero, Yeo, Bassett, & D'Esposito, 2018;

Dubois, Galdi, Han, Paul, & Adolphs, 2018; Finn et al., 2015;

Hampson, Driesen, Skudlarski, Gore, & Constable, 2006; Kashyap

et al., 2019; Kong et al., 2018; Li, Mai, & Liu, 2014; Rosenberg et al.,

2016; Smith et al., 2015). In an interesting work by Smith et al. (2015),

a positive–negative axis linking various demographic and lifestyle fac-

tors to the rs functional connectivity was delineated. They found posi-

tive correlations to positive personal qualities (e.g., high performance

on memory and cognitive test, life satisfaction) and negative correla-

tion values for the negative traits (like substance use, anger, rule-

breaking behavior).

The way the rs-fMRI networks are organized in the brain has been

associated to our state, psyche, social values as well as lifestyle habits

(Buckner, Andrews-Hanna, & Schacter, 2008; Gusnard & Raichle,

2001; van den Heuvel & Hulshoff Pol, 2010). In this aspect, multiple

scans from each subject are helpful and previous research has shown

that conclusions from single session could be erroneous (McGonigle

et al., 2000) though intersession variabilities too exist (McGonigle

et al., 2000; Smith et al., 2005). Such intersession variabilities are not

only limited to physiological changes in the subjects inside the scanner

but also includes alterations in their cognitive and affective states

(Gorgolewski et al., 2015). With the advent of big rs-fMRI data with

multiple scans of each individual, the conventional way either concat-

enates the rs-fMRI or averages the functional connectivity over the

multiple scans. This might lead to loss of important information from

the data. An alternate way would be to extract the features of fMRI

that are common across all the rs scans. With this motivation, using

the human connectome project (HCP; Smith et al., 2013; Van Essen

et al., 2012) data wherein all healthy subjects are scanned four times

and performances across numerous behavioral measures are recorded

inside and outside the scanner, we aimed to extract the common fea-

tures shared by the four rs-fMRI runs of a single subject and explore

the pattern (of the features) across all the subjects.

To this aim, we applied the common orthogonal basis extraction

(COBE) algorithm (Zhou, Cichocki, Zhang, & Mandic, 2016; Zhou,

Zhao, et al., 2016); to the four rs-fMRI runs acquired from a single

HCP subject. We repeated this for all the subjects (n = 788). The

COBE algorithm was originally developed to extract the common and

individual features from a “multi-block” data (collection of matrices).

The common features are those that are shared by all the blocks

whereas the individual features are specific to a block. The number of

common components is to be specified by the user. In our case, each

run of rs-fMRI of an individual was taken as a block, so application of

COBE to the rs-fMRI of all the four runs (multi-block) will decompose

the rs-fMRI signals into a linear sum of a number of common COBE

component subspace (shared by all runs) and run-specific subspaces

(specific to a run). The common component represents the spatial dis-

tribution of weights across the brain that is shared by the rs-fMRI's of

an individual across all the scans (Refer Section 2.5). If the features

are common to all the rs scans of an individual, they could in-principle

be used to classify the healthy HCP subjects based on the similarity/

dissimilarity of the pattern. This is because the physiological parame-

ters in healthy individuals are considered to be in a normal range and

a similar expectation from the rs-fMRI features is preconceived. How-

ever, this may not be true considering the wide inter-subject variability

in the rs-fMRI features within the healthy individuals. Hence, one

interesting approach would be to identify a subgroup of healthy HCP

subjects whose pattern of common COBE component is different

from the group, and then find out which behavioral measures account

to the differences between the two healthy groups. This will be

intriguing given the general trend to classify subjects based on exter-

nal symptoms (like healthy vs. diseased, control vs. patient, etc.) does

not consider the scope for variations within healthy individuals. How-

ever, it is undeniable that there can be subtypes within the healthy

individuals whose rs-fMRI features might lie on the edges of the spec-

trum owing to their lifestyle habits, psychological factors, and physio-

logical traits.

Conceptually, it is worth mentioning our work along with the vast

literature that had investigated trait-level and state-level aspects of

fMRI (Bijsterbosch et al., 2017; Cole, Bassett, Power, Braver, &

Petersen, 2014; Gratton et al., 2018; Kong et al., 2018; Krienen, Yeo, &

Buckner, 2014; Shirer, Ryali, Rykhlevskaia, Menon, & Greicius, 2012;

Wang, Ong, Patanaik, Zhou, & Chee, 2016; Yeo, Krienen, et al., 2015).

In our previous work (Kashyap et al., 2019), COBE was applied to the

rs-fMRI of each run in the HCP data. Each run comprised of rs-fMRI

from 803 subjects. Interestingly, the common COBE component of the

four runs revealed the state-effects specific to that run. Subsequently,

removing the state-effects from the rs-fMRI improved the functional

connectivity based behavioral prediction. Here, our goal was to obtain

the common COBE component for all the HCP subjects (from their mul-

tiple scans) and classify those subjects whose common COBE compo-

nents were as dissimilar as possible. Subsequently, to understand the

behavioral manifestation of the dissimilarity we explored the traits that

are different in those subset of subjects.

2 | METHODS

2.1 | Overview

The rs-fMRI of 1,094 subjects from the HCP were considered in the

study. However, only 788 subjects survived the selection criteria and

were preprocessed. Thus, COBE was applied to the four rs-fMRI scans
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of these subjects. The first common component of COBE was extracted

for every subject. The common components were correlated to form

the common-correlation matrix. The subjects with a dissimilar pattern

were then extracted from the matrix and grouped together to form the

maximal-COBE-dissimilarity (MCD) group. The MCD group and the

group of remaining subjects were evaluated for differences in the

scores of 62 behavioral measures and 7 physiological parameters.

2.2 | Rs-fMRI data

The HCP S1200 release has a multimodal collection of data across

behavioral, structural MRI, rs, and task-state fMRI, and Magnetoenceph-

alography (MEG) paradigms from healthy adults (Smith et al., 2009; Van

Essen et al., 2012). All imaging data were collected on a custom-made

Siemens 3T Skyra scanner that uses a multiband sequence. The rs-fMRI

was acquired in 2 mm isotropic resolution with a TR of 0.72 s for a total

of 1,200 frames lasting 14 min and 33 s. The rs-fMRI and behavioral

data were collected on two sessions. Each rs-fMRI session consisted of

two runs. Therefore, in total each subject had four runs of rs scans.

2.3 | Preprocessing

The dataset used in the present study was taken from our previous

work (Kashyap et al., 2019). The dataset comprised of the MSMAll ICA-

FIX data on fs_LR32K surface space (HCP S1200 manual; Glasser et al.,

2013; Griffanti et al., 2014; Salimi-Khorshidi et al., 2014) from 1,094

subjects. As few studies have pointed out that ICA-FIX cannot

completely remove the head-motion artifacts, so further nuisance

regression was necessary (Burgess et al., 2016; Kong et al., 2018; Li

et al., 2019; Siegel et al., 2017). Therefore, an estimate of framewise

displacement (FD; Jenkinson, Bannister, Brady, & Smith, 2002) and

root-mean-square of voxel-wise differentiated signal (DVARS; Power,

Barnes, Snyder, Schlaggar, & Petersen, 2012) was done using

fsl_motion_outliers. Consequently, those volumes for which FD

>0.2 mm and DVARS >75, as well as uncensored segments of data last-

ing fewer than five contiguous volumes were flagged as outliers. Nui-

sance regression was performed with 18 regressors that consisted of a

global signal, six motion parameters, averaged ventricular signal, aver-

aged white matter signal, and their temporal derivatives. While comput-

ing the regression coefficients in nuisance regression, outlier volumes

were ignored. Finally, a bandpass filter (0.009 Hz ≤ f ≤ 0.08 Hz) was

applied to the data and the BOLD runs with more than half the volumes

flagged as outliers were completely removed. As a result, 82 subjects

had all runs removed and were thus eliminated.

Adopting the 400 cortical parcellation by Schaefer et al. (2018),

we obtained the preprocessed fMRI time courses from each of the

400 cortical parcels. Additionally, 19 subcortical regions (brain stem,

accumbens, amygdala, caudate, cerebellum, diencephalon, hippocam-

pus, pallidum, putamen, and thalamus; Fischl et al., 2002) were

included. Thus, there were 419 regions in total, and therefore, the rs-

fMRI of each subject in each run was a 419 x 1200 matrix.

2.4 | Behavioral data

We considered a set of 62 behavioral measures and 7 physiological

parameters spanning across eight categories including—alertness,

cognition, emotion, personality, sensory, health and family history,

psychiatric and life function, and substance use (Table S1). These

categories provided a considerable range of the participant's traits,

lifestyle habits, age, body mass index, and health. Importantly, our

analyses were restricted to the subjects who had all four runs sur-

viving the quality control procedure with all 62 behavioral measures

and 7 physiological parameters, resulting in a final set of

788 subjects.

2.5 | Extraction of common COBE component

For more details about the COBE algorithm, we refer readers to meth-

odological papers (Zhou, Cichocki, et al., 2016; Zhou, Zhao, et al.,

2016). Here, we briefly describe how COBE was applied to rs-fMRI

data in this study.

We applied COBE to the rs-fMRI's of each subject separately. For

ease of explanation, let us consider the rs-fMRI (419 x 1200 matrix) of

each run as a block. Here, we would like to recall that our study

included only those subjects that had four runs of rs scan. For a sub-

ject S, let Rn denote the 419 x 1200 rs-fMRI matrix for the nth run

(where n is a positive integer with n ≤ 4). As illustrated in Figure 1a,

COBE seeks to decompose Rn into

Rn = �A�Y
T
n + ÂnŶ

T
n = common subspace+ runspecific subspace,

where �A is a 419 xC matrix representing the common component

shared across all runs. C is the number of common components, and

is defined a priori by the user. In the present study, we evaluated

the common COBE component �A of all the subjects (n = 788)

for C = 1. The common COBE component for C = 2 and 3 were also

evaluated but not considered further in the analysis (see results).

A useful property of COBE is that if COBE was applied twice (sequen-

tially) with C = 1, the two common components will be (in practice)

the same as the common components obtained by applying

COBE once with C = 2 (Zhou, Cichocki, et al., 2016). This has

also been tested in our previous work (Kashyap et al., 2019). We

mention this property here since one might assume that a minor dif-

ference in the data might affect the decomposition and the compo-

nents may split up differently; which however is not the case

with COBE.

The spatial map of the common COBE component for a subject

can be visualized in Figure 1b. The �Y
T
n (C x 1200 matrix) is the time

course associated with the component. �A�Y
T
n is a 419 x 1200 matrix is

representing the common subspace shared by all the runs, while ÂnŶ
T

n

is also a 419 x1200 matrix representing the projection of the nth run

rs-fMRI onto the run-specific subspace.

KASHYAP ET AL. 1263



2.6 | Common correlation matrix

The common component �A for every subject (n = 788) was extracted.

To classify subjects based on their similarity/dissimilarity of the pat-

tern of the common component, we correlated the component across

the subjects. Thus, a 788 x788 common-correlation matrix was com-

puted using Pearson's correlation. We seek to select a subset of sub-

jects from the correlation matrix whose common components are as

different as possible (i.e., the subject should have a COBE pattern dis-

similar to other subjects). To this end, we applied the strategy devel-

oped by (Kong et al., 2018). Here, we randomly picked an entry in the

common-correlation matrix (i.e., pair of subjects) whose absolute cor-

relation was less than a threshold of 0.75 (also see Supporting Infor-

mation for the other thresholds that we tested to ascertain 0.75 as

our choice for optimal threshold). We continued adding new random

subjects, such that each newly added subject was minimally correlated

(absolute r< .75) with the current set of subjects. The procedure ter-

minated when no more subject could be added. The procedure was

repeated 1,000 times, resulting in 1,000 sets with varied number of

subjects per set. Of these 1,000 sets, we chose the set containing

subjects with the smallest maximum absolute correlation. We will

refer to this subset of subjects as the MCD group. Subsequently, the

remaining subjects formed the COBE-similarity (CS) group.

2.7 | Behavioral differences between groups

Here, we would like to remind the readers that the HCP dataset which

is from a healthy population is been dissociated to extract a subset of

subjects with dissimilar rs-fMRI COBE pattern. The purpose is to char-

acterize the traits associated with the dissimilarity. For this, we

compared the two groups (MCD and CS) across 62 behavioral measures

and 7 physiological parameters from eight categories namely health,

alertness, cognition, emotion, personality, psychiatry and life function,

sensory, and substance use. The behavioral measures included in each

category provided comprehensive information on an individual's physi-

cal health, psyche, and lifestyle habits. For example, the personality

includes behavioral measure like- agreeableness, open to experiences;

emotion includes happiness, anger, fear; substance use include his/her

intake of alcohol, tobacco, illegal drugs, marijuana; sensory encompasses

the sense of odor, taste, pain; cognition involves scores of mini-mental

state examination, sleep, working memory, fluid intelligence; and psychi-

atric function include the scores of antisocial personality problem, exter-

nalizing, internalizing; and physiological parameters include a person's

blood pressure, body mass index, and so on (Table S1).

2.8 | Code availability

The code of COBE can be downloaded at http://www.bsp.brain.riken.

jp/~zhougx/cifa.html. The Schaefer's 400-region parcellation is avail-

able at https://github.com/ThomasYeoLab/CBIG/tree/master/

stable_projects/brain_parcellation/Schaefer2018_LocalGlobal. The

code relevant to the work can also be obtained from https://

github.com/ClinicalBrainLab/Maximizing_Dissimilarity_in_fMRI

3 | RESULTS

3.1 | Overview

COBE was applied to rs-fMRI of 788 HCP subjects to obtain their first

common component. The common COBE component of each subject

F IGURE 1 Illustration of common
orthogonal basis extraction (COBE).
(a) COBE applied to the four runs of rs-
fMRI of an HCP subject. COBE projects
the rs-fMRI run of a HCP subject onto a

common subspace (�A�Y
T
n ) and run-specific

subspace (ÂnŶ
T

nÞ. The common

component (�A) is shared across all runs.
The number of components C spanning
the common subspace (i.e., the number

of columns of �A) is a user-specified
parameter. (b) The spatial map of the

weights of the common component �A
(419 x C) for C = 1 across the cortical
areas is shown for a random HCP subject
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was correlated with the common component of other subjects to

obtain the 788 x 788 common-correlation matrix. From this matrix, a

subset of subjects that had a dissimilar pattern of common COBE

component was extracted to form the MCD group (n = 107) and

remaining subjects formed the CS group (n = 681) group. The spatial

map of the common component from the MCD and CS group were

evaluated and significant differences were found in the default mode

network. Finally, we also explored the scores of 62 behavioral mea-

sures and 7 physiological parameters between the two groups and

found only six behavioral measures to differentiate the two groups.

3.2 | Spatial maps of common COBE components

Common COBE components are illustrated in a spatial map in

Figure 2 below. Figure 2a,b shows the 400 cortical and 19 subcortical

Region of interest (ROI) used to compute the 419 x 1200 rs-fMRI time

courses. Parcel colors correspond to 17 large-scale-networks (Yeo

et al., 2011). The 17 networks are a finer division of the 7 cortical

networks (Temporo Parietal, Default mode, Control, Limbic, Attention,

Somato-motor, and Visual). The distribution of the weights of the

common component (419 x C) for C = 1 (i.e., the first common compo-

nent) for all the subjects across the seven cortical networks (Yeo

et al., 2011) of both hemispheres and subcortical areas can be visual-

ized in Figure 2c. In line with previous studies, we find that the pat-

tern with higher weights in the default mode network is consistent

across the subjects. However, visual inspection also reveals that in a

few subjects the distribution of weights was different. Therefore, we

extracted the subjects with a dissimilar pattern of the common COBE

component from the common correlation matrix.

Interestingly, we also observed the distribution of weights across

all the subjects for the second and third common COBE component,

that is, for C = 2 and 3, respectively (Supporting Information). We

found that as the number of components increases the similarity of

the pattern across the subjects decrease. Visual inspection reveals

high interindividual variation in the distribution of the second and

third common COBE component across the seven rs networks.

F IGURE 2 Spatial distribution
of common common orthogonal
basis extraction (COBE)
component (C = 1) across the
cortical and subcortical areas.
(a) 400 cortical parcels (Schaefer
et al., 2018). Parcel colors
correspond to 17 large-scale-
networks (Yeo et al., 2011). The
17 networks are a subdivision of
seven networks (temporal parietal,
default mode, control, limbic,
attention, somato-motor, and
visual). (b) Nineteen subcortical
ROIs (Fischl et al., 2002).
(c) Spatial distribution of weights
of the first common COBE
component of 788 subjects across
the 7 networks (in both
hemispheres) and 19 subcortical
areas. Most subjects show higher
weights in the default mode
network areas, though in few
subjects the distribution of weight
is different
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Overall, the results suggested not to use higher components to

classify the subjects.

The MCD group comprised of 107 subjects (max |r| = .74). Conse-

quently, the CS group had 681 subjects (max |r| = .98). The spatial

map of the weights of common COBE component for the two groups

(averaged across the subjects) can be visualized in Figure 3a. A clear

difference between the two groups can be visualized in the default

mode network (DMN) areas especially in the posterior cingulate cor-

tex (PCC). Since, Yeo et al. (2011) have subdivided the DMN into

DMN-A, DMN-B, and DMN-C (Figure 2a); so we narrowed down our

analysis to the subnetworks of DMN and averaged the weights of the

common component across the subjects in the two groups for the

17 cortical networks and 19 subcortical areas (Figure 3b). Specifically,

we found that the two groups differed in their distribution of the

weights only across DMN-A areas (p < 1e−14).

3.3 | Behavioral differences between the groups

Scores of 62 behavioral measures and 7 physiological parameters

were compared between the MCD and CS group (Table S1). We

found five behavioral measures to survive the significance level with

Bonferroni correction (p < 1e−5). Interestingly, these behaviors

belonged to the two categories (a) substance use, and (b) psychiatric

and life function. In the first category, we found the behavioral mea-

sure that reported a subject's alcohol consumption in past 7 days

(Total_Drinks_7_Days) to be higher for MCD (10.11 ± 1.00) than the

CS group (4.84 ± 0.26). Similarly, the tobacco consumption in the past

7 days (Total_Any_Tobacco_7_Days) for MCD (18.05 ± 3.26) was also

higher than the CS (5.97 ± 0.76). For the ease of representation, we

divided the intake of alcohol and tobacco into five categories based

on the number of times they (alcohol/tobacco) were reported to have

been consumed by a subject in the past 7 days. They are –0

(no intake of alcohol/tobacco), 1–5, 6–10, 11–15, 16–20, and > 20

times (Figure 4a,b). Thirty-nine percent of subjects in MCD reported

≥ 6 drinks of alcohol/week; which is only 10.7% in the CS. Similarly,

87% in CS group reported to have never taken any kind of tobacco

(e.g., cigarettes, cigars, pipes); which in contrast is only 49.5% in MCD.

From the first category, we also found the MCD group to be com-

prised of those subjects who had a high use of Marijuana in their life-

time (4.59 ± 0.04; SSAGA_Mj_Times_Used) compared to the CS

group (1.35 ± 0.06). The HCP has divided the use of Marijuana into

five categories based on the number of times it was reported to have

been used by the subjects in their lifetime. They are 0 (never used),

1–5, 6–10, 11–100, 111–999, >1,000 times. As shown in Figure 4c,

all the subjects in MCD reported having used marijuana for more than

100 times; of which, 59% reported a marijuana intake of more than

1,000 times. In contrast, 53% of subjects in the CS group reported to

have never used marijuana, and the majority of the remaining subjects

(45%) reported to have used it for less than 100 times. Similarly, the

use of illicit drugs (cocaine, hallucinogen, opiates, sedatives, and stim-

ulants; SSAGA_Times_Used_Illicits) was less in CS (0.53 ± 0.04) com-

pared to MCD (2.19 ± 0.16). Seventy-eight percent of the subjects in

F IGURE 3 Differences in weight
of common component across the
default mode network areas between
the MCD and CS group. (a) Higher

weights of common COBE
component can be observed in the
Posterior cingulate cortex for the CS
group. (b) The averaged weights of
common COBE component across
the 17 cortical networks (Yeo et al.,
2011) and subcortical areas is shown
for the two groups. * Represents the
network that survived Bonferroni
correction (p < 1e−14). Clearly, the
MCD group has reduced weights in
the DMN-A. (COBE, common
orthogonal basis extraction; CS,
COBE-similarity; MCD, maximal-
COBE-dissimilarity)
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the CS group reported having never used any illicit drugs. This was

only 27% in the MCD (Figure 4d).

In the psychiatric and life function category of behaviors, the score

of antisocial personality problems measured by DSM criteria

(DSM_Antis_Pct) was marginally higher in MCD than in the CS

(Figure 4e). The antisocial personality in HCP is Achenbach Adult Self

Report questionnaires for the DSM-oriented scale that measures a per-

son's aggressiveness, law-abiding behaviors, and so on. Interestingly,

since sex related differences are reported for both substance use

(Cooper & Craft, 2018) and antisocial personality problems (Cale &

Lilienfeld, 2002), we calculated the number of males and females in

each group. MCD group comprised of 74 males and 33 females

whereas CS group comprised of 323 males and 358 females, respec-

tively. Chi-square test revealed gender differences between the groups

to be significant (p < 1e−5). Since a large sex difference exists between

the two groups we investigated if this factor was driving the between-

group differences in substance use, alcohol and tobacco consumption,

and antisocial personality problems. We compared the weights of com-

mon COBE component between the MCD group and a randomly

selected sex-matched (RSSM) subset of the CS group. We found this

difference to be significant (p < 1e−4) for DMN-A. Subsequently, we

also compared the scores of the five behavioral measures between the

MCD and RSSM groups. Only two behavioral measures, namely the

use of marijuana (SSAGA_Mj_Times_Used) and illicit drugs

(SSAGA_Times_Used_Illicits) remained significantly different between

the two groups. The additional analysis provided a concrete basis for

evaluating the role of sex in differentiating the MCD and CS group.

Finally, as an auxiliary analysis we also correlated the variation of

the common COBE component of each subject in the MCD group

with five behavioral measures—marijuana intake, illicit drug use, alco-

hol and tobacco use, and antisocial personality problems (see

Supporting Information).

F IGURE 4 Comparison of behavioral measures between MCD and CS group for the use of (a) alcohol (b) tobacco (c) marijuana, and (d) illicit
drugs; and for (e) antisocial personality problems
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4 | DISCUSSION

In this article, we utilized an alternate way to analyze the multiple

scans of rs-fMRI data from an individual. We applied the COBE tech-

nique (Zhou, Cichocki, et al., 2016; Zhou, Zhao, et al., 2016) to decom-

pose the four runs of rs-fMRI of each HCP subject into a common

component space (C = 1) shared by the runs of an individual and run-

specific subspaces. We observed the distribution of the weights of

the first common COBE component across the cortical and subcortical

areas for all the HCP subjects (n = 788). Consistent with previous rs-

fMRI studies, we found higher weights across the areas of DMN. By

visual inspection, distribution of weights across the areas in few sub-

jects appeared dissimilar. Therefore, we attempted to extract the sub-

set of subjects whose common components are as different as

possible (Kong et al., 2018). This subset of subjects (n = 107) com-

prised the MCD, and the remaining subjects (n = 681) formed the CS

group. We evaluated the distribution of weights of the common

COBE component for the two groups across the 17 rs networks (Yeo

et al., 2011) and 19 subcortical areas. We found the weights in the

DMN-A to be lower (p < 1e−14) in MCD compared to the CS group

(Figure 2e). To our knowledge, none of the studies have applied COBE

to multiple runs of rs-fMRI of healthy individuals and classified them

in subgroups. It is important to mention that appropriate feature

extraction is a prerequisite to pattern recognition and classification.

While few researchers have used similar techniques like canonical cor-

relation analysis (CCA) to extract features that were hierarchically

clustered to identify subtypes of depression (Drysdale et al., 2017),

and to delineate positive–negative axis linking various demographic

and lifestyle factors (Smith et al., 2015); others have used alternate

methods like partial least square (PLS; Krishnan, Williams, McIntosh, &

Abdi, 2011) and joint and individual variation explained (JIVE; Yu, Risk,

Zhang, & Marron, 2017) to establish the relationship between brain

activity and behavioral measure. Although JIVE has been suggested as

an improved alternative to PLS and CCA (for details, Yu et al., 2017),

COBE was shown to be better in estimating the common components

compared to JIVE (for details, Zhou, Cichocki, et al., 2016).

Altogether our COBE-based approach highlighted that there exists

heterogeneity between participants even in healthy control

populations. Such heterogeneities are often ignored in comparison

studies (healthy vs. disease, control vs. patient, etc.) because the

behavioral manifestations of the observed heterogeneities are not

well mapped. To this, we looked for the traits that are different

between the two groups. We compared the two groups for 62 behav-

ioral measures and 7 physiological parameters spanning eight catego-

ries that include an individual's lifestyle habits, cognitive skills, and

physical health. Four behavioral measures (use of marijuana, illicit

drugs, alcohol, and tobacco) from the substance use category, and one

behavioral measure (antisocial personality problem) from the psychiat-

ric and life function category had significant difference (p < 1e−5)

between the two groups. The findings suggested that high substance

use and problems of antisocial personality might alter the pattern of

common COBE component shared by multiple scans of rs-fMRI.

However, it is equally plausible that the observed alterations in com-

mon COBE component might indicate vulnerability toward substance

use and antisocial personality problems. Interestingly, we also found

sex differences between the two groups, with percentage of males

being higher in the MCD. Never the less, the existence of subtypes

within healthy subjects highlighted that the general categorization of

subjects based on external symptoms (e.g., healthy vs. diseased, con-

trol vs. patient, etc.) might need to consider aspects of a subject's life-

style habits, and psychological factors as they have an impact on the

rs-fMRI features.

It was interesting to find that MCD group reported higher use of

marijuana, illicit drugs, alcohol, and tobacco. This was coherent with

our observation of reduced weight of the common COBE components

in the PCC constituting the core region of DMN-A. Task-based fMRI

meta-analysis has reported PCC areas in the DMN to be affected in

substance seekers (Blest-Hopley, Giampietro, & Bhattacharyya, 2018;

Yanes et al., 2018). The rs-fMRI analysis revealed that longer use of

cannabis is associated with decreased low frequency power of the

DMN (Thijssen et al., 2017). The PCC, a key region in the DMN is

responsible for self-consciousness and self-referential mental

thoughts (Andrews-Hanna, Reidler, Sepulcre, Poulin, & Buckner,

2010; Andrews-Hanna, Smallwood, & Spreng, 2014; Buckner & Car-

roll, 2007; Cavanna & Trimble, 2006; Fransson & Marrelec, 2008;

Leech & Sharp, 2013; Raichle et al., 2001; Spreng, Mar, & Kim, 2008).

Marijuana users were also observed to have alteration in the PCC

(Kim et al., 2011). Similarly, individuals with alcohol use disorder,

(Chanraud, Pitel, Pfefferbaum, & Sullivan, 2011) reported

desynchronized low frequency rs-fMRI signals from the PCC and cer-

ebellum. Nicotine (a key ingredient of tobacco) was also associated

with decreased activity in the regions of DMN (Tanabe et al., 2011)

and low overall functional connectivity (Cheng et al., 2019). From the

vast pool of scientific studies, it can be inferred that tobacco and

drugs intake, along with marijuana and alcohol use are associated with

differences in rs time courses (Cheng et al., 2014), and are possibly

making adolescents more vulnerable to psychiatric and other disor-

ders (Thijssen et al., 2017).

The subjects in the MCD were found to have a predisposition

toward antisocial personality problems. It is important to mention

here that the interrelationship between substance use, tobacco-

intake, alcoholism, and antisocial behavior is complex (Helstrom,

Bryan, Hutchison, Riggs, & Blechman, 2004). These factors are highly

correlated both cross-sectionally and across the lifespan, share com-

mon risk factors, and are predictive of negative life outcomes

(Compton, Conway, Stinson, Colliver, & Grant, 2005; Kendler, Pres-

cott, Myers, & Neale, 2003; Krueger, Markon, Patrick, Benning, &

Kramer, 2007; Moffitt, 2017; Windle, 1990). About 40–50% of indi-

viduals with a substance use disorder meet the criteria for antisocial

personality disorder and approximately 90% of individuals diagnosed

with an antisocial personality disorder also have a co-occurring sub-

stance use disorder (Messina, Farabee, & Rawson, 2003). Results have

also suggested that smoking and alcohol use act as mediators

between externalizing problems and marijuana and other drug use

(Helstrom et al., 2004). Adolescents with antisocial behavior have
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reported reduced connectivity in the DMN (Broulidakis et al., 2016;

Zhou, Yao, et al., 2016). This is not surprising because DMN has an

indispensable role in social understanding of others (Li et al., 2014)

and the areas responsible for social cognition partly overlap with the

DMN (Corbetta, Patel, & Shulman, 2008; Mars et al., 2012; Schilbach,

Eickhoff, Rotarska-Jagiela, Fink, & Vogeley, 2008).

Even though we identified the common component shared by

multiple runs of rs-fMRI of an individual and observed its distribution

across all networks; it is difficult to conclude whether the lower

weights in the DMN-A areas accounted for the observed behavioral

differences. In a longitudinal study from a large sample (n = 1,293) of

subjects, it was found that adolescents who reported more antisocial

behavior at age 14 were more likely to smoke daily, to drink heavily,

and to use illicit drugs at age 17 (Adalbjarnardottir & Rafnsson, 2002).

Valuing the association between antisocial personality and other

behaviors reported in existing literature, we investigated the correla-

tion between the scores of antisocial personality with other four

behavioral measures and found weak correlation for all the pairs (see

Supporting Information). Never the less, considering that such causal

relationship between antisocial behavior and addiction is strong,

future studies could investigate whether pre-existing differences in

DMN leads to antisocial behavior in individuals or whether the differ-

ences in DMN are the effect of antisocial behavior. With that said,

the present study was an exploratory analysis that found meaningful

differences in rs-fMRI features within subgroups of healthy individuals

that had the distinctions translated to behavioral measures. The

groups differed in their ratio of number of males to females, clearly

reflecting that the MCD group comprised more males (see Table S1).

Although this might indicate that the rate of substance and antisocial

personality problems are higher in males (Cale & Lilienfeld, 2002; Coo-

per & Craft, 2018; Petker et al., 2019), we cross-validated the findings

to determine if the gender variable could be driving the between-

group (MCD and CS) differences in the behaviors. For this, we created

the RSSM group and accounted for the behaviors that are different

between MCD and RSSM. The differences in the two groups (RSSM

and MCD) remained significant for use of marijuana and illicit drugs

only, and not for tobacco consumption, alcohol intake, and antisocial

personality problems. This additional analysis had an impact on our

overall inference regarding the effect of sex on the behavioral differ-

ences between MCD and CS group. The results show that it is unlikely

that the between-group difference (MCD and CS) in marijuana and

illicit drug use is related to sex. Similarly, the behaviors for which dif-

ferences were nonsignificant suggested that there exists a group in

which an interesting sex difference might also relate to the elevated

rates of tobacco consumption, alcohol intake, and antisocial personal-

ity problems seen in men.

Here, we used COBE for analyzing multisession rsfMRI to identify

subtypes in healthy population. A natural question therefore arises as

to why individuals with dissimilar COBEs themselves formed a coher-

ent subgroup? To understand this, we explored the variation of the

common COBE component within the subjects in the MCD group

with the five behavioral measure (see Supporting Information). A wea-

ker correlation observed between the behaviors and variance of the

common COBE component made it difficult to comprehend the rea-

son behind such dissociation. However, it does confirm that maximiz-

ing the dissimilarity in the extracted features holds the potential to

accentuate a coherent subgroup. Never the less, our findings

highlighted the importance of considering between-subject heteroge-

neity even in healthy control populations (Kebets et al., 2019); and

conveys a subtle message to the comparison studies (healthy

vs. disease, control vs. patient, etc.) to recruit healthy/control subjects

based not only on the features relevant to their study, but to also con-

sider the factors that might lead to disparateness in subject's habit

and psyche.

Here, we would also like to point out few limitations of the study.

From the data perspective, it would have been interesting to obtain

additional information about the last use of substance, marijuana as

well as tobacco and alcohol. We mention this because an individual's

substance use status (dose, duration, etc.) at the time of scanning can

affect the COBE indices. In the absence of such vital information, it is

difficult to rationalize the state versus trait effects of substance use

on the common COBE component of a subject. From the approach

perspective, we would like to point out that only cortex-based

parcellation was used in our analysis. Subcortical structures as well as

cerebellum were considered as 19 individual nodes in the analysis.

We cannot deny the crucial role these vital structures have in sub-

stance use and personality disorders (Manza, Tomasi, & Volkow,

2018). We would therefore advise future studies to use integrated

parcellations that detail the cortex, cerebellum, and the subcortical

structures. Keeping these limitations in mind, we look forward to

applying the present method on patient groups to identify meaningful

disorder subtypes (Drysdale et al., 2017; Zhang et al., 2016).

Finally, it is important to note that the results obtained by our pre-

sent study are consistent with the results obtained by Smith et al.

(2015), though they adopted a different methodology. They applied

CCA on the resting state functional connectivity matrices of 461 HCP

subjects with 158 behavioral measures to obtain a single mode of

brain-behavior covariation. They found that vast majority of the posi-

tive behaviors (e.g., education, income, IQ, life-satisfaction, etc.) corre-

late positively with this mode, and similarly sets of negative behaviors

(e.g., anger, sleep quality, alcohol intake, substance abuse, Marijuana

use, etc.) correlate negatively. Interestingly, they also found DMN

regions mainly the medial frontal and parietal cortex in the temporo-

parietal junction and in anterior insula and frontal operculum to con-

tribute strongly. It cannot be denied that the CCA mode provided a

distinct overview of the brain-behavior organization, however, the

ability to generate explainable insights at the individual level (subject

or behavior specific) was limited. For example, the set of areas belong-

ing to DMN were found to be involved across a wide range of behav-

iors that surfaced from the first CCA mode; however, association of

certain behaviors (reading, aggression, working memory, etc.) with

these exclusive areas might be of debate. In contrast, our study had a

tapered point of view. Using the common signal from the multiple

fMRI runs, we focused to delineate subgroups within healthy individ-

uals whose rs pattern (mainly in the PCC area of DMN) was dissimilar.

The dissimilarity translated to significant differences across six (out of
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69) negative behaviors (including gender), which were also a part of

the behavioral measures found significant in the CCA mode (Smith

et al., 2015). It is noteworthy to mention that two exploratory studies

reporting similar resting-state fMRI-behavior relationship by using dif-

ferent methodologies emphasize the reliability of the findings. Last

but not least, the reproducibility of the prime findings is also one of

the important purposes of generating big public datasets.

5 | CONCLUSION

In this work, we decomposed the rs-fMRI runs of a single HCP subject

to extract the common component shared by their multiple runs. We

classified those subjects whose common component is as different as

possible. In those subjects, we found that the strength of the common

component was reduced in the DMN areas. Interestingly, we also

found these subjects to have higher usage of marijuana, illicit drugs,

alcohol, and tobacco, and have a predisposition toward antisocial per-

sonality problems. The existence of subtypes within healthy individ-

uals that have meaningful differences in their resting-state patterns

conveys that the general categorization of subjects based only on

external symptoms (e.g., healthy vs. diseased, control vs. patient, etc.)

should also consider aspects of a healthy subject's lifestyle habits and

psyche. Overall, the exploratory approach and the findings convey the

importance of considering the factors associated with between-

subject heterogeneity in healthy control populations.
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